Clustering a Sample of Major and Emerging Economies in Function of their Economic Policy Uncertainty: K-means, Agglomerative Hierarchical Clustering and Density-Based Spatial Clustering with Noise

Authors

DOI:

https://doi.org/10.18381/eq.v22i1.7355

Keywords:

Incertidumbre de la política económica, análisis de agrupamiento, K-means, DBSCAN, agrupación jerárquica aglomerativa

Abstract

Objective: This study carries out pattern identification in a sample of 16 major and emerging economies in function of their economic policy uncertainty. Methodology: This paper applies for the groping procedure K-Means, Agglomerative Hierarchical Clustering (AHC), and Clustering and Density-Based Spatial Clustering with Noise (DBSCAN). Data: This research uses the Economic Policy Uncertainty (EPU) Index calculated monthly by the EPU Agency for several countries. In particular, it examines EPU indexes for a sample 16 countries in five crisis periods between 2008 and 2024; the sample was chosen based on data availability. Results: Global crises have created distinct country clusters transcending traditional economic groupings based on development status or geographical location. Notably, in the COVID-19 pandemic it was generated an unprecedented global EPU homogeneity among countries. High-uncertainty clusters consistently emerge, often comprising large economies directly affected by crises. Limitations: There are possible biases in news-based component of EPU indices. Originality: To the best of the authors’ knowledge, multiple clustering techniques for various crisis periods have not been implemented before. Conclusion: Global crises can equalize policy uncertainty, challenging conventional notions of economic resilience. The empirical findings emphasize the importance of considering EPU in a global context for those responsible for improving the design of economic policy.

Downloads

Download data is not yet available.

References

Antonakakis, N., Gabauer, D., Gupta, R., & Plakandaras, V. (2018). Dynamic connectedness of uncertainty across developed economies: A time-varying approach. Economics Letters, 166: 63-75. DOI: 10.1016/j.econlet.2018.02.011

Azqueta-Gavaldon, A., Hirschbühl, D., Onorante, L., & Saiz, L. (2020). Economic policy uncertainty in the euro area: An unsupervised machine learning approach. Frankfurt: European Central Bank. DOI: 10.2139/ssrn.3516756.

Baker, S.R., Bloom, N., & Davis, S.J. (2016). Measuring economic policy uncertainty. Quarterly Journal of Economics, 131(4): 1593-1636. DOI: 10.1093/qje/qjw024

Baker, S.R., Bloom, N., Davis, S.J., & Kost, K.J. (2019). Policy news and stock market volatility. NBER Working Papers (w25720). DOI: 10.3386/w25720

Balcilar, M., Gupta, R., Kyei, C., & Wohar, M.E. (2016). Does economic policy uncertainty predict exchange rate returns and volatility?Evidence from a nonparametric causality-in-quantiles test. Open Economies Review, 27: 229-250. DOI: 10.1007/s11079-016-9388-x

Berger, T., & Uddin, G.S. (2016). On the dynamic dependence between equity markets, commodity futures and economic uncertainty indexes. Energy Economics, 56: 374-383. DOI: 10.1016/j.eneco.2016.03.024

Born, B., Breuer, S., & Elstner, S. (2018). Uncertainty and the great recession. Oxford Bulletin of Economics and Statistics, 80.(5): 951-971. DOI: 10.1111/obes.12229

Brogaard, J., & Detzel, A. (2015). The asset-pricing implications of government economic policy uncertainty. Management science, 61(1): 3-18. DOI: 10.1287/mnsc.2014.2044

Caggiano, G., Castelnuovo, E., & Figueres, J.M. (2020). Economic policy uncertainty spillovers in booms and busts. Oxford Bulletin of Economics and Statistics, 82(1): 125-155. DOI: 10.1111/obes.12323

Davis, S.J. (2016). An index of global economic policy uncertainty. NBER Working Papers, (w22740). DOI: 10.3386/w22740

Ercolani, V., & Natoli, F. (2020). Forecasting US recessions: the role of economic uncertainty. Economics letters, 193: (109302). DOI: 10.1016/j.econlet.2020.109302

Ester, M., Kriegel, H.P., Sander, J. and Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM International Conference on Knowledge Discovery and Data Mining (KDD). 226-231.

Gabauer, D., & Gupta, R. (2018). On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR approach. Economics Letters, 171: 63-71. DOI: 10.1016/j.econlet.2018.02.033

Gulen, H., & Ion, M. (2016). Policy uncertainty and corporate investment. Review of Financial Studies, 29(3): 523-564. DOI: 10.1093/rfs/hhv050

Handley, K., & Limão, N. (2017). Policy uncertainty, trade, and welfare: Theory and evidence for China and the United States. American Economic Review, 107(9): 2731-2783. DOI: 10.1257/aer.20141419

Hartigan, J.A., & Wong, M.A. (1979). Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1): 100-108. DOI: 10.2307/2346830

Hoque, M. E., & Zaidi, M.A.S. (2019). The impacts of global economic policy uncertainty on stock market returns in regime switching environment: Evidence from sectoral perspectives. International Journal of Finance & Economics, 24(2): 991-1016. DOI: 10.1002/ijfe.1702

Kang, W., Lee, K., & Ratti, R.A. (2014). Economic policy uncertainty and firm-level investment. Journal of Macroeconomics, 39 Part A: 42-53. DOI: 10.1016/j.jmacro.2013.10.006

Kaveh-Yazdy, F., & Zarifzadeh, S. (2021). Measuring economic policy uncertainty using an unsupervised word embedding-based method. arXiv preprint (arXiv:2105.04631). DOI: 10.48550/arXiv.2105.04631

Klößner, S., & Sekkel, R. (2014). International spillovers of policy uncertainty. Economics Letters, 124(3): 508-512. DOI: 10.1016/j.econlet.2014.07.015

Li, X. M., Zhang, B., & Gao, R. (2015). Economic policy uncertainty shocks and stock–bond correlations: Evidence from the US market. Economics Letters, 132: 91-96. DOI: 10.1016/j.econlet.2015.04.013

Liow, K. H., Liao, W. C., & Huang, Y. (2018). Dynamics of international spillovers and interaction: Evidence from financial market stress and economic policy uncertainty. Economic Modelling, 68: 96-116. DOI: 10.1016/j.econmod.2017.06.012

Liu, Y., Zhang, Z. (2022). How does economic policy uncertainty affect CO2 emissions? A regional analysis in China. Environmental Science and Pollution Research, 29: 4276–4290. DOI: 10.1007/s11356-021-15936-6

MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability (v. 4, pp. 281-297). Los Angeles: University of California Press.

Marfatia, H., Zhao, W. L., & Ji, Q. (2020). Uncovering the global network of economic policy uncertainty. Research in International Business and Finance, 53: 101223. DOI: 10.1016/j.ribaf.2020.101223

Martínez-García, E. (2021). Get the lowdown: The international side of the fall in the US natural rate of interest. Economic Modelling, 100: 105486. DOI: 10.1016/j.econmod.2021.03.005

Murtagh, F., & Contreras, P. (2012). Algorithms for hierarchical clustering: an overview. Wiley Inter-disciplinary Reviews: Data Mining and Knowledge Discovery, 2(1): 86-97. DOI: 10.1002/widm.53

Phan, D.H., Sharma, S.S., & Tran, V.T. (2021). Economic policy uncertainty and the cross-section of stock returns: Evidence from China. Journal of International Money and Finance, 116: 102366. DOI: 10.1016/j.jimonfin.2021.102366

Rousseeuw, P.J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of computational and applied mathematics, 20: 53-65. DOI: 10.1016/0377-0427(87)90125-7

Schubert, E., Sander, J., Ester, M., Kriegel, H. P., & Xu, X. (2017). DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Transactions on Database Systems (TODS), 42(3): 1-21. DOI: 10.1145/3068335

Shapiro, A. H., Sudhof, M., & Wilson, D. J. (2020). Measuring news sentiment. Journal of Econometrics, 228(2): 221-243. DOI: 10.1016/j.jeconom.2020.07.053

Tam, P.S. (2018). Global trade flows and economic policy uncertainty. Applied Economics, 50(34-35): 3718-3734. DOI: 10.1080/00036846.2018.1436151

Wang, Q., & Sun, X. (2017). Crude oil price: Demand, supply, economic activity, economic policy uncertainty and wars–From the perspective of structural equation modelling (SEM). Energy, 133: 483-490. DOI: 10.1016/j.energy.2017.05.147

Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American statistical association, 58(301): 236-244. DOI: 10.1080/01621459.1963.10500845

Xu, W., Rao, W., Wei, L., & Wang, Q. (2023). A normalized global economic policy uncertainty index from unsupervised machine learning. Mathematics, 11(15): 3268. DOI: 10.3390/math11153268

Yono, K., Sakaji, H., Matsushima, H., Shimada, T., & Izumi, K. (2020). Construction of macroeconomic uncertainty indices for financial market analysis using a supervised topic model. Journal of Risk and Financial Management, 13(4): 79. DOI: 10.3390/jrfm13040079

Downloads

Published

2024-12-17

How to Cite

Venegas Martínez, F., & Jiménez-Preciado, A. L. (2024). Clustering a Sample of Major and Emerging Economies in Function of their Economic Policy Uncertainty: K-means, Agglomerative Hierarchical Clustering and Density-Based Spatial Clustering with Noise . EconoQuantum, 22(1), 57–76. https://doi.org/10.18381/eq.v22i1.7355

Metrics