Social isolation and covid-19 in the regions of Mexico
DOI:
https://doi.org/10.18381/eq.v18i2.7227Keywords:
Social distancing, contagion and deaths, covid-19Abstract
Objective: Using information from the Google Mobility Report, particularly the one related to residential stay, we estimated the effect of social distancing on new cases and deaths from covid-19 in the Mexican States. Methodology: We employ a dynamic econometric model which takes into account the potential endogeneity in the registration of new cases, as well as the lagged effect of the social distancing variable. Results: The findings indicate a negative and significant relationship between residential stay and the growth rate of cases and deaths. Moreover, the proposed econometric model is used to perform simulations of the possible effects of the level of social distancing on the levels of cases and deaths generated by the covid-19 pandemic in Mexico until July the 5th. Limitations: The study does not take into account the economic costs associated with higher levels of social distancing. Originality: To the best of our knowledge, this is the first study for the case of Mexico that analyze the effect of social distancing on infections and deaths from covid-19 at the regional level. Conclusion: According to the models, it is estimated that if there had been higher rates of social distancing, between 135 000 and 143 000 fewer cases of covid-19 would have been registered. Recepción: 11/10/2020 Aceptación: 28/01/2021Downloads
References
Arellano, M. y Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58 (2), 277-297.
Aromí, D. y Cristia, J. (2020). El big data en los tiempos del coronavirus. Recuperado de https://blogs.iadb.org/ideas-que-cuentan/es/el-big-data-en-los-tiempos-del-coronavirus/
Banco de México-Banxico. (2020a). Reporte sobre las economías regionales. Enero-marzo 2020. Recuperado de https://www.banxico.org.mx/publicaciones-y-prensa/reportes-sobre-las-economias-regionales/%7BAC9C8A70-ECC0-7B77-EE44-BE087567CB83%7D.pdf
Banco de México-Banxico. (2020b). Recuadro 1. Propagación del covid-19 en las regiones de México. Reporte sobre las economías regionales. Enero-marzo 2020 (pp. 7-12). Recuperado de https://www.banxico.org.mx/publicaciones-y-prensa/reportes-sobre-las-economias-regionales/%7BAC9C8A70 -ECC0-7B77-EE44-BE087567CB83%7D.pdf
Blundell, R. y Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87 (1), 115-143.
Brodeur, A., Gray, D. M., Islam, A. y Bhuiyan, S. (2020). A literature review of the economics of covid-19. IZA Discussion Paper No. 13411. Recuperado de http://ftp.iza.org/dp13411.pdf
Carraro, A., Ferrone, L. y Squarcina, M. (2020). Are covid-19 containment measures equally effective in different world regions? Working Paper 11/2020. Italia: Universita’degli Studi di Firenze, Dipartimento di Scienze per l’Economia e l’Impresa. Recuperado de https://www.disei.unifi.it/upload/sub/pubblicazioni/repec/pdf/wp11_2020.pdf
Engle, S., Stromme, J. y Zhou, A. (2020). Staying at home: mobility effects of covid-19. Social Science Research Network. Recuperado de https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3565703
Google. (2020a). Informes de Movilidad Local sobre el covid-19. Recuperado de https://www.google.com/covid19/mobility/
Google. (2020b, 20 de noviembre). Cambios en la movilidad. Informe de movilidad de las comunidades ante el covid-19. Recuperado de https://www.gstatic.com/covid19/mobility/2020-11-20_MX_Mobility_Report_es-419.pdf
Hsiao, C. (2003). Analysis of Panel Data. Cambridge: Cambridge University Press.
Jinjarak, Y., Ahmed, R., Nair-Desai, S., Xin, W. y Aizenman, J. (2020). Accounting for Global covid-19 diffusion patterns, January-April 2020 (No. w27185). National Bureau of Economic Research.
Judson, R. y Owen, A. (1999). Estimating dynamic panel data models: A guide for macroeconomists. Economic Letters, 65 (1), 9-15.
Jorda, O. (2005): Estimation and Inference of Impulse Responses by Local Projections. American Economic Review, 95, 161-182.
Kwon, J., Grady, C., Feliciano, J. T. y Fodeh, S. J. (2020). Defining facets of social distancing during the covid-19 pandemic: Twitter analysis.medRxiv.
Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica: Journal of the Econometric Society, 49 (6), 1417-1426.
Secretaría de Salud: Secretaría de Salud. (2021), Datos Abiertos Dirección General de Epidemiología. Recuperado de https://datos.covid-19.conacyt.mx/#DownZCSV
Villerias Salinas, S., Nochebuena, G. y Uriostegui Flores, A. (2020). Análisis geográfico del covid-19 Análisis espacial de vulnerabilidad y riesgo en salud por covid-19 en el estado de Guerrero, México.
Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. ee. uu.: mit press.
Yilmazkuday, H. (2020). Stay-at-Home works to fight against COVID-19: International evidence from Google Mobility Data. Journal of Human Behavior in the Social Environment. Recuperado de https://ssrn.com/abstract=3571708
Published
How to Cite
Issue
Section
License
El contenido publicado en EconoQuantum se encuentra bajo una Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.