A new solution for resource distribution based on levels and incentive allocation

Authors

  • Luz Judith Rodríguez Esparza Investigadora por México Conahcyt-Universidad Autónoma de Aguascalientes
  • Julio César Macías Ponce Universidad Autónoma de Aguascalientes, Depto. de Matemáticas y Física
  • Roberto Alejandro Kú Carrillo Universidad Autónoma de Aguascalientes, Depto. de Matemáticas y Física

DOI:

https://doi.org/10.18381/eq.vi21i2.7319

Abstract

Objective: this work aims to propose an alternative for distribution of incentives by levels. Methodology: distribution by levels is obtained through a simple linear regression between the distribution of incentives assigned to each agent and the amount demanded according to their level in the ladder structure. Results: the proposed solution manages to exactly distribute the available resource among all agents, presenting a simple and practical implementation. Three examples are included that illustrate the application of this new method, highlighting the differences as compared to both the usual and proportional distribution modes. Limitations: the simple linear regression used assumes a linear relationship between the level and incentives, which may not reflect the complexity of some organizational structures. Originality: the distribution solution developed in this work offers an interpretation in terms of individual performances, which expands its applicability to various areas. Conclusions: our distribution proposal acts as a mediator between the usual and proportional distributions. It is observed that the usual distribution favors the lowest performance levels, while the proportional distribution benefits the highest levels.

Downloads

Download data is not yet available.

References

Bergantiños, G., Chamorro, J. M., Lorenzo, L., & Lorenzo-Freire, S. (2018). Mixed rules in multi-issue allocation situations. Naval Research Logistics, 65(1), 66-77. https://doi.org/10.1002/nav.21785

Bergantiños, G., Lorenzo, L., & Lorenzo-Freire, S. (2010). A characterization of the proportional rule in multi-issue allocation situations. Operations Research Letters, 38(1), 17-19. https://doi.org/10.1016/j.orl.2009.10.003

Calleja, P., Borm, P., & Hendrickx, R. (2005). Multi-issue allocation situations. European Journal of Operational Research, 164(3), 730-747. https://doi.org/10.1016/j.ejor.2003.10.042

Casares, E. R. and Plata, L. (2020). Teoría económica aplicada, 1st ed. Universidad Autónoma Metropolitana.

Curiel, I.J., Maschler, M. & Tijs, S.H. Bankruptcy games. Zeitschrift für Operations Research 31, A143–A159 (1987). https://doi.org/10.1007/BF02109593

González-Alcón, C., Borm, P., & Hendrickx, R. (2007). A composite run-to-the-bank rule for multi-issue allocation situations. Mathematical Methods of Operations Research (Heidelberg, Germany), 65(2), 339-352. https://doi. org/10.1007/s00186-006-0123-z

Herrera González, V. (2021). “Análisis de los recursos federales identificados para las entidades federativas en el proyecto de presupuesto de egresos de la federación 2022”. https://bibliodigitalibd.senado.gob.mx/handle/123456789/5396

Herrero, C., Maschler, M., & Villar, A. (1999). Individual rights and collective responsibility: the rights–egalitarian solution. Mathematical Social Sciences, 37(1), 59-77. https://doi.org/10.1016/s0165-4896(98)00017-1

Herrero, C., & Villar, A. (2002). Sustainability in bankruptcy problems. Top, 10(2), 261-273. https://doi.org/10.1007/bf02579019

James, G., Witten, D., & Hastie, T. (2013). An introduction to statistical learning: With applications in R. Springer.

Moulin, H. (1987). Equal or proportional division of a surplus, and other methods. International Journal of Game Theory, 16(3), 161-186. https://doi.org/10.1007/bf01756289

Olvera-Lopez, W., Sanchez-Sanchez, F., & Tellez-Tellez, I. (2014). Bankruptcy problem allocations and the core of convex games. Economics Research International, 2014, 1-7. https://doi.org/10.1155/2014/517951

O’Neill, B. (1982). A problem of rights arbitration from the Talmud. Mathematical Social Sciences, 2(4), 345-371. https://doi.org/10.1016/0165-4896(82)90029-4

Sánchez, F. J. (2016). Reglas igualitarias para los problemas de reparto con referencias múltiples. Revista de métodos cuantitativos para la economía y la empresa, 22. https://doi.org/10.46661/revmetodoscuanteconempresa.2350

Sánchez-Sánchez, F. and Olvera-López, W. (2011). About incentives distribution. Applied Mathematical Sciences, 5(49), 2411–2423. https://www.m-hikari.com/ams/ams-2011/ams-49-52-2011/lopezAMS49-52-2011.pdf

Secretaría de Educación Pública. (s.f.). “Programa de estímulos al desempeño docente (2008- 2009)”.

Thomson, W. (2003). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey. Mathematical Social Sciences, 45(3), 249-297. https://doi.org/10.1016/s0165-4896(02)00070-7

Thomson, W. (2015). Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: An update. Mathematical Social Sciences, 74, 41-59. https://doi.org/10.1016/j.mathsocsci.2014.09.002

Published

2024-06-30

How to Cite

Rodríguez Esparza, L. J., Macías Ponce, J. C., & Kú Carrillo, R. A. (2024). A new solution for resource distribution based on levels and incentive allocation. EconoQuantum, 21(2), 29–46. https://doi.org/10.18381/eq.vi21i2.7319

Metrics