Dynamic volatility of bank stock returns in Mexico: DCC-GARCH vs Copula-GARCH approaches
DOI:
https://doi.org/10.18381/eq.v20i2.7289Abstract
Objective: To analyze the dynamics of volatility among the main banks in Mexico.Methodology: Two complementary methodologies are used: i) DCC-GARCH and ii) Rolling window Copula-GARCH.Weekly closing prices of stocks among four of the main banks are used: BBVA, Citi-Banamex, Banorte and Inbursa, from January 27, 2009 to October 29, 2021.Results: The results confirm a time-varying correlation.Limitations: The main limitation is that we have not been able to include more banks due to the evolution of their prices.Originality: The originality lies in the contrast of the results.Both methodologies report similar results, but these are more restrictive as the distribution optimally captures the behavior of the data.Conclusions: We conclude that different volatility patterns encourage investment decisions that consider potential losses and promote portfolio diversification.Downloads
References
Adrianzen, C. C. M. (2016). La rentabilidad de los bancos comerciales y el ambiente macroeconómico: el caso peruano en el periodo 1982-2014. Tesis. Doctorado. Universitat Politècnica de Catalunya. Departamento de Organización de Empresas. Programa de Doctorado en Administración y Dirección de Empresas. Disponible en https://upcommons.upc.edu/bitstream/handle/2117/96389/TCMAC1de1.pdf
Aielli, G. P. (2013). Dynamic conditional correlation: on properties and estimation. Journal of Business & Economic Statistics, 31(3), 282-299.
Aliyev, F., Ajayi, R., & Gasim, N. (2020). Modelling asymmetric market volatility with univariate GARCH models: Evidence from Nasdaq-100. The Journal of Economic Asymmetries, 22, e00167.
Baruník, J., Kocenda, E., & Vácha, L. (2015). Volatility spillovers across petroleum markets. The Energy Journal, 36(3).
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.
Bouazizi, T. (2021). Oil price volatility models during coronavirus crisis: testing with appropriate models using further univariate garch and monte carlo simulation models. International Journal of Energy Economics and Policy, 670216917.
Bouseba, F. Z., & Zeghdoudi, H. (2015). Use of the GARCH models to energy markets: Oil price volatility. Global Journal of Pure and Applied, 4385-4394.
Castro, C. (2015). Riesgo sistémico en el sistema financiero peruano. Revista de estudios económicos, 29, 77-90.
Chittedi, K. R. (2015). Financial crisis and contagion effects to Indian stock market: ‘DCC–GARCH’analysis. Global Business Review, 16(1), 50-60.
Choudhry, T., & Jayasekera, R. (2014). Returns and volatility spillover in the European banking industry during global financial crisis: Flight to perceived quality or contagion? International Review of Financial Analysis, 36, 36-45.
Engle, R.F. (2002). Dynamic conditional correlation: A simple class of multivariate GARCH models, Journal of Business and Economic Statistics, 20, 339-350.
Francq, C., & Zakoian, J. M. (2010). Strict stationarity testing and estimation of explosive ARCH models. Disponible en https://mpra.ub.unimuenchen.de/22414
Gabauer, D. (2020). Volatility impulse response analysis for DCC-GARCH models: The role of Volatility Transmission Mechanisms. Journal of Forecasting, 39(5), 788-796.
García, J. C. T., Bolívar, H. R., & Vázquez, F. A. (2016). Actualización del modelo de riesgo crediticio, una necesidad para la banca revolvente en México. Revista Finanzas y Política Económica, 8(1), 17-30.
García, J. C. T., García, M. Á. M., & Martínez, F. V. (2017). Administración del riesgo crediticio al menudeo en México: una mejora econométrica en la selección de variables y cambios en sus características. Contaduría y administración, 62(2), 377-398.
García, M. L. S., & García, M. J. S. (2010). Modelos para medir el riesgo de crédito de la banca. Cuadernos de administración, 23(40).
Gómez Rodríguez, T., Ríos Bolívar, H., & Zambrano Reyes, A. (2018). Competencia y estructura de mercado del sector bancario en México. Contaduría y administración, 63(1), 1-22. Disponible en https://www.scielo.org.mx/pdf/cya/v63n1/0186-1042-cya-63-01-00002.pdf
Gomez-Gonzalez, J. E., & Rojas-Espinosa, W. (2019). Detecting contagion in Asian exchange rate markets using asymmetric DCC-GARCH and R-vine copulas. Economic Systems, 43(3-4), 100717.
Jian, C., Jie, L., & Ting, L. (2021). A study of linkage between crude oil and natural gas in North American market: Based on the empirical analysis of bayesian DCC-GARCH model and LSTAR model. Management Review, 33(7), 16.
Jiang, Y., Jiang, C., Nie, H., & Mo, B. (2019). The time-varying linkages between global oil market and China’s commodity sectors: Evidence from DCC-GJR-GARCH analyses. Energy, 166, 577-586.
Le, T. P. T. D., & Tran, H. L. M. (2021). The contagion effect from US stock market to the Vietnamese and the Philippine stock markets: The evidence of DCC-GARCH model. The Journal of Asian Finance, Economics and Business, 8(2), 759-770.
Liebscher, E. (2008). Construction of asymmetric multivariate copulas. Journal of Multivariate analysis, 99(10), 2234-2250.
Lizarraga, J. Á. A., & de la Cruz Gallegos, J. L. (2011). Crecimiento económico y el crédito bancario: un análisis de causalidad para México. Revista de Economía, Facultad de Economía, Universidad Autónoma de Yucatán, 28(77), 39-39.
Lobera, A. B., Pelayo, A., & Rojas, F. (2018). Valoración bursátil y rentabilidad de los bancos: España, eurozona, Estados Unidos. Cuadernos de Información económica, (264), 83-91.
Miller, J. L. C. (2013). Crédito bancario y crecimiento económico en México. Economía informa, 378, 14-36.
Moshirian, F., & Wu, Q. (2012). Banking industry volatility and economic growth. Research in International Business and Finance, 26(3), 428-442.
Naifar, N., & Hammoudeh, S. (2016). Dependence structure between sukuk (Islamic bonds) and stock market conditions: An empirical analysis with Archimedean copulas. Journal of International Financial Markets, Institutions and Money, 44, 148-165.
Nelsen, R. B. (2006). An introduction to copulas. Springer. New York, USA. https://doi.org/10.1007/0-387-28678-0
Oberholzer, N., & Venter, P. (2015). Univariate GARCH models applied to the JSE/FTSE stock indices. Procedia Economics and Finance, 24, 491-500.
Pilbeam, K., & Langeland, K. N. (2015). Forecasting exchange rate volatility: GARCH models versus implied volatility forecasts. International Economics and Economic Policy, 12(1), 127-142.
Rodríguez, R. C. (2015). Morosidad en el pago de créditos y rentabilidad de la banca comercial en México. Revista Mexicana de Economía y Finanzas. Nueva Época/Mexican Journal of Economics and Finance, 10(1), 71-83.
Schwert, G. W. (2011). Stock volatility during the recent financial crisis. European Financial Management, 17(5), 789-805.
Shiferaw, Y. A. (2019). Time-varying correlation between agricultural commodity and energy price dynamics with Bayesian multivariate DCC-GARCH models. Physica A: Statistical Mechanics and Its Applications, 526, 120807.
Sklar, A. (1959). Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de l’Institut Statistique de l’Université de Paris, 8, 229–231.
Venter, P. J., Levendis, A., & Mare, E. (2022). Collateralised option pricing in a South African context: A univariate GARCH approach. Cogent Economics & Finance, 10(1), 2106631.
Venter, P. J., Mare, E., & Pindza, E. (2020). Price discovery in the cryptocurrency option market: A univariate GARCH approach. Cogent Economics & Finance, 8(1), 1803524.
Yaméogo, W., & Barro, D. (2021). Modeling the dependence of losses of a financial portfolio using nested archimedean copulas. International Journal of Mathematics and Mathematical Sciences, 2021.
Yang, L., Cai, X. J., Li, M., & Hamori, S. (2015). Modeling dependence structures among international stock markets: Evidence from hierarchical Archimedean copulas. Economic Modelling, 51, 308-314.
Zuríta, W. B. (2017). Crédito y financiamiento bancario (Brasil y México). Ola Financiera, (28), 63-85.
Downloads
Published
How to Cite
Issue
Section
License
El contenido publicado en EconoQuantum se encuentra bajo una Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.