Volatilidad dinámica en el sector bancario en México: evidencia DCC-GARCH vs Cópula-GARCH

Autores/as

  • Christian Bucio-Pacheco UAEMéx - UAP Huehuetoca
  • Miriam Sosa-Castro UAM – Iztapalapa
  • Francisco Reyes-Zarate UAM – Azcapotzalco

DOI:

https://doi.org/10.18381/eq.v20i2.7289

Resumen

Objetivo: Analizar la volatilidad dinámica entre principales bancos situados en México.Metodología: se emplean dos metodologías alternas: i) DCCGARCH y ii) Cópula-GARCH con ventanas móviles. Se utilizan los precios accionarios semanales de cierre de cuatro bancos en México: BBVA, Citi-Banamex, Banorte e Inbursa del 27 de enero de 2009 al 29 de octubre de 2021.Resultados: Se confirma que la correlación entre volatilidades de los bancos es cambiante.Limitación: La principal es que no se pudieron incluir más bancos debido a la evolución de los precios de sus acciones.Originalidad: La originalidad subyace en el contraste de resultados, a través de las metodologías propuestas se obtienen resultados similares y estos son más restrictivos conforme la metodología incluye una captura distribucional óptima sobre el comportamiento de los datos.Conclusión: al existir patrones diversos de volatilidad entre los principales bancos en México, se puede promover la diversificación de portafolios.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Adrianzen, C. C. M. (2016). La rentabilidad de los bancos comerciales y el ambiente macroeconómico: el caso peruano en el periodo 1982-2014. Tesis. Doctorado. Universitat Politècnica de Catalunya. Departamento de Organización de Empresas. Programa de Doctorado en Administración y Dirección de Empresas. Disponible en https://upcommons.upc.edu/bitstream/handle/2117/96389/TCMAC1de1.pdf

Aielli, G. P. (2013). Dynamic conditional correlation: on properties and estimation. Journal of Business & Economic Statistics, 31(3), 282-299.

Aliyev, F., Ajayi, R., & Gasim, N. (2020). Modelling asymmetric market volatility with univariate GARCH models: Evidence from Nasdaq-100. The Journal of Economic Asymmetries, 22, e00167.

Baruník, J., Kocenda, E., & Vácha, L. (2015). Volatility spillovers across petroleum markets. The Energy Journal, 36(3).

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of econometrics, 31(3), 307-327.

Bouazizi, T. (2021). Oil price volatility models during coronavirus crisis: testing with appropriate models using further univariate garch and monte carlo simulation models. International Journal of Energy Economics and Policy, 670216917.

Bouseba, F. Z., & Zeghdoudi, H. (2015). Use of the GARCH models to energy markets: Oil price volatility. Global Journal of Pure and Applied, 4385-4394.

Castro, C. (2015). Riesgo sistémico en el sistema financiero peruano. Revista de estudios económicos, 29, 77-90.

Chittedi, K. R. (2015). Financial crisis and contagion effects to Indian stock market: ‘DCC–GARCH’analysis. Global Business Review, 16(1), 50-60.

Choudhry, T., & Jayasekera, R. (2014). Returns and volatility spillover in the European banking industry during global financial crisis: Flight to perceived quality or contagion? International Review of Financial Analysis, 36, 36-45.

Engle, R.F. (2002). Dynamic conditional correlation: A simple class of multivariate GARCH models, Journal of Business and Economic Statistics, 20, 339-350.

Francq, C., & Zakoian, J. M. (2010). Strict stationarity testing and estimation of explosive ARCH models. Disponible en https://mpra.ub.unimuenchen.de/22414

Gabauer, D. (2020). Volatility impulse response analysis for DCC-GARCH models: The role of Volatility Transmission Mechanisms. Journal of Forecasting, 39(5), 788-796.

García, J. C. T., Bolívar, H. R., & Vázquez, F. A. (2016). Actualización del modelo de riesgo crediticio, una necesidad para la banca revolvente en México. Revista Finanzas y Política Económica, 8(1), 17-30.

García, J. C. T., García, M. Á. M., & Martínez, F. V. (2017). Administración del riesgo crediticio al menudeo en México: una mejora econométrica en la selección de variables y cambios en sus características. Contaduría y administración, 62(2), 377-398.

García, M. L. S., & García, M. J. S. (2010). Modelos para medir el riesgo de crédito de la banca. Cuadernos de administración, 23(40).

Gómez Rodríguez, T., Ríos Bolívar, H., & Zambrano Reyes, A. (2018). Competencia y estructura de mercado del sector bancario en México. Contaduría y administración, 63(1), 1-22. Disponible en https://www.scielo.org.mx/pdf/cya/v63n1/0186-1042-cya-63-01-00002.pdf

Gomez-Gonzalez, J. E., & Rojas-Espinosa, W. (2019). Detecting contagion in Asian exchange rate markets using asymmetric DCC-GARCH and R-vine copulas. Economic Systems, 43(3-4), 100717.

Jian, C., Jie, L., & Ting, L. (2021). A study of linkage between crude oil and natural gas in North American market: Based on the empirical analysis of bayesian DCC-GARCH model and LSTAR model. Management Review, 33(7), 16.

Jiang, Y., Jiang, C., Nie, H., & Mo, B. (2019). The time-varying linkages between global oil market and China’s commodity sectors: Evidence from DCC-GJR-GARCH analyses. Energy, 166, 577-586.

Le, T. P. T. D., & Tran, H. L. M. (2021). The contagion effect from US stock market to the Vietnamese and the Philippine stock markets: The evidence of DCC-GARCH model. The Journal of Asian Finance, Economics and Business, 8(2), 759-770.

Liebscher, E. (2008). Construction of asymmetric multivariate copulas. Journal of Multivariate analysis, 99(10), 2234-2250.

Lizarraga, J. Á. A., & de la Cruz Gallegos, J. L. (2011). Crecimiento económico y el crédito bancario: un análisis de causalidad para México. Revista de Economía, Facultad de Economía, Universidad Autónoma de Yucatán, 28(77), 39-39.

Lobera, A. B., Pelayo, A., & Rojas, F. (2018). Valoración bursátil y rentabilidad de los bancos: España, eurozona, Estados Unidos. Cuadernos de Información económica, (264), 83-91.

Miller, J. L. C. (2013). Crédito bancario y crecimiento económico en México. Economía informa, 378, 14-36.

Moshirian, F., & Wu, Q. (2012). Banking industry volatility and economic growth. Research in International Business and Finance, 26(3), 428-442.

Naifar, N., & Hammoudeh, S. (2016). Dependence structure between sukuk (Islamic bonds) and stock market conditions: An empirical analysis with Archimedean copulas. Journal of International Financial Markets, Institutions and Money, 44, 148-165.

Nelsen, R. B. (2006). An introduction to copulas. Springer. New York, USA. https://doi.org/10.1007/0-387-28678-0

Oberholzer, N., & Venter, P. (2015). Univariate GARCH models applied to the JSE/FTSE stock indices. Procedia Economics and Finance, 24, 491-500.

Pilbeam, K., & Langeland, K. N. (2015). Forecasting exchange rate volatility: GARCH models versus implied volatility forecasts. International Economics and Economic Policy, 12(1), 127-142.

Rodríguez, R. C. (2015). Morosidad en el pago de créditos y rentabilidad de la banca comercial en México. Revista Mexicana de Economía y Finanzas. Nueva Época/Mexican Journal of Economics and Finance, 10(1), 71-83.

Schwert, G. W. (2011). Stock volatility during the recent financial crisis. European Financial Management, 17(5), 789-805.

Shiferaw, Y. A. (2019). Time-varying correlation between agricultural commodity and energy price dynamics with Bayesian multivariate DCC-GARCH models. Physica A: Statistical Mechanics and Its Applications, 526, 120807.

Sklar, A. (1959). Fonctions de Répartition à n Dimensions et Leurs Marges. Publications de l’Institut Statistique de l’Université de Paris, 8, 229–231.

Venter, P. J., Levendis, A., & Mare, E. (2022). Collateralised option pricing in a South African context: A univariate GARCH approach. Cogent Economics & Finance, 10(1), 2106631.

Venter, P. J., Mare, E., & Pindza, E. (2020). Price discovery in the cryptocurrency option market: A univariate GARCH approach. Cogent Economics & Finance, 8(1), 1803524.

Yaméogo, W., & Barro, D. (2021). Modeling the dependence of losses of a financial portfolio using nested archimedean copulas. International Journal of Mathematics and Mathematical Sciences, 2021.

Yang, L., Cai, X. J., Li, M., & Hamori, S. (2015). Modeling dependence structures among international stock markets: Evidence from hierarchical Archimedean copulas. Economic Modelling, 51, 308-314.

Zuríta, W. B. (2017). Crédito y financiamiento bancario (Brasil y México). Ola Financiera, (28), 63-85.

Descargas

Publicado

2023-06-30

Cómo citar

Bucio-Pacheco, C., Sosa-Castro, M., & Reyes-Zarate, F. (2023). Volatilidad dinámica en el sector bancario en México: evidencia DCC-GARCH vs Cópula-GARCH. EconoQuantum, 20(2), 69–93. https://doi.org/10.18381/eq.v20i2.7289

Número

Sección

Artículos

Métrica