Financial infrastructure outreach to indigenous peoples: a three-approaches exploration for Colombia, Ecuador, and Peru
DOI:
https://doi.org/10.18381/eq.v22i1.7349Keywords:
Financial Outreach, Indigenous Population, Latin America, Machine Learning, SHAP Values.Abstract
Objective: assess and contrast disparities in the extent and location of financial infrastructures of branches and correspondent agents for outreach in areas with high incidence of indigenous peoples and explore correlations with territorial covariates, in Colombia, Ecuador and Peru. Methodology: compare three approaches: a descriptive study explores key distributions, econometric analyses identify spatial disparities and heterogeneous associations, and machine learning techniques (regression trees, SHAP values) uncover complex, non-linear relationships, not revealed by traditional methods. Results: high indigenous peoples incidence, above 50% of the population, and location in rural areas and Amazon regions are associated with lower financial outreach, reflecting universal and idiosyncratic barriers. Low population density is associated with low financial outreach in different regions. Limitations: data availability on a few variables have limited model specifications. Secondary sources (census, official financial infrastructure data) are used. Results are for three specific countries. Originality: this paper covers an unexplored topic; there is no other three-country, three-methods study on this topic. Conclusion: financial inclusion policies must address the need for convenient physical, institutional and digital meeting places and close existing gaps, to respond to the unique socioeconomic and cultural context of indigenous peoplesDownloads
References
Albertos, C., & Martín, C. (2021). Guía de conceptos clave para el trabajo con pueblos indígenas. Washington, D.C.: Banco Interamericano de Desarrollo. DOI: 10.18235/0003279
Armendariz, B., & J. Morduch (2010), The economics of microfinance, 2 ed. Cambridge, MA: MIT Press.
Bamberger, M. (2016). The importance of a mixed methods approach for evaluating complexity. In: M. Bamberger, J, Vaessen, & E. Raimondo (eds), Dealing with complexity in development evaluation. London: Sage. DOI: 10.4135/9781483399935
Boada Serret, T., & Rodríguez Ferrari, A. (2015). Banking correspondent linkages and financial inclusion strategies in Latin America. A comparative analysis of business strategies in Brazil, Colombia and Peru. Tesina. Máster Internacional en Microfinanzas para el Emprendimiento. Universidad Autónoma de Madrid.
Breiman, L., Friedman, J., Olshen, R.A. & Stone, C.J. (2017). Classification and regression trees. Abingdon-on-Thames: Routledge. DOI: 10.1201/9781315139470
Brogeras, D., Gallagher, T., Olmedo, L. et al. (2023). Digital Transformation for Financial Inclusion in Latin America and the Caribbean. Washington, D.C.: IDB Invest and NTT Data. https://idbinvest.org/en/digital-transformation-financial-inclusion
Castells, P., Corvalan, L., & Rattel, F. (2023). Brechas de conectividad en América Latina: Una hoja de ruta para Argentina, Brasil, Colombia, Costa Rica y Ecuador. Brasilia: Central Bank of Brazil. https://www.bcb.gov.br/en/financialstability/pixstatistics
Cermeño, R., Roa García, M.J. & González-Vega C. (2016). Financial development and the volatility of growth: Times series evidence for Mexico and United States, Monetaria, 4(2): 195-232 (July-December). https://www.cemla.org/PDF/monetaria/PUB-MON-IV-02.PDf#page=47
Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (pp. 785-794). DOI: 10.1145/2939672.2939785
Chen, T., Tong, H., Benesty, M., Khotilovich, V. et al. (2024). Xgboost: Extreme Gradient Boosting. R package version 1.7.8.1. https://CRAN.R-project. org/package=xgboost
Collins, D., Morduch, J., Rutherford, S., & Ruthven, O. (2009). Portfolios of the poor: How the world’s poor live on $2 a day. Princeton: Princeton University Press.
Davis, O. & Partridge, W. (1994). Promoting the development of indigenous peoples in Latin America. Finance and Development, (March): 39-40.
Demirgüç-Kunt, A., Klapper, L. & Singer, D. (2017). Financial inclusion and inclusive growth: A review of recent empirical evidence. Policy Research Working Paper (WPS8040). Washington, D.C.: World Bank Group. http://documents.worldbank.org/curated/en/403611493134249446/Financial-inclusion-and-inclusive-growth-a-review-of-recent-empirical-evidence
Demirgüç-Kunt, A., Klapper, L., Singer, D. (2022). The Global Findex database 2021: Financial inclusion, digital payments, and resilience in the age of COVID-19. Washington, DC: World Bank. http://hdl.handle.net/10986/37578
Dias, D., Izaguirre, J.C., Kerse, M., & Staschen, S. (2023). Digital financial services for financial inclusion: Tools for supervisors. Washington, D.C.: CGAP. https://www.cgap.org/sites/default/files/publications/DFS for Financial Inclusion - Tools for Supervisors.PDf
The Economist Intelligence Unit. (2016). Microscopio global 2016: Análisis del entorno para la inclusión financiera. Washington, D.C.: FOMIN, Banco Interamericano de Desarrollo. DOI: 10.18235/0006522
Faz, X. & García Arabéhéty, P. (2015). Driving scale and density of agent networks in Peru. Washington, D.C.: CGAP. http://www.cgap.org/sites/default/files/Brief-Driving-Scale-and-Density-of-Agent-Networks-in-Peru-Jan-2015. PDf
Gómez-Soto, F., González-Vega, C., Zilveti, V., Zurita, R., Chen, G. & Lozano, D. (2023). La oferta de servicios financieros para pueblos indígenas en Colombia, Ecuador, Panamá y Perú. Working paper. Bogota: Fundación Capital. https://fundacioncapital.org/wp-content/uploads/2024/12/Resumen-Oferta-de-servicios-financieros-para-pueblos-indigenas-de-Colombia-Ecuador-Panama-y-Peru.pdf
Gonzalez-Vega, C. (1998). Do financial institutions have a role in assisting the poor? Kimenyi, M. S., Wieland, R. C. and Von Pischke, J.D. (eds.), Strategic Issues in microfinance. Aldershot, England: Ashgate.
Gonzalez-Vega, C., Mo, L. & di Plácido, G. (2023). Measuring the evolution of client vulnerability: Innovation at the BBVA Microfinance Foundation. V. Hartarska & R. Cull (eds.), Handbook of microfinance, financial inclusion, and development. Cheltenham, United Kingdom: Edward Elgar Publishing. DOI: 10.4337/9781789903874
Greenwell, B.M. and Boehmke, B.C. (2020). Variable importance plots—An introduction to the vip package. The R Journal, 12(1): 343-366. DOI: 10.32614/RJ-2020-013
Hall, G. & Patrinos, H.A. (eds.) (2005). Indigenous peoples, poverty, and human development in Latin America. London: Palgrave Macmillan. DOI: 10.1057/9780230377226
Hartarska, V. & Cull, R. (eds.) (2023). Handbook of microfinance, financial inclusion and development. Cheltenham, UK: Edward Elgar Publishing. DOI: 10.4337/9781789903874
Hartl, J. (2019). Amazonas: exuberantes selvas tropicales, suelos inservibles. Deutsche Welle, August 23. https://www.dw.com/es/amazonas-exuberantes-selvas-tropicales-suelos-inservibles/a-50145121
Heimann, U., Navarrete Luna, J., O’Keefe, M., Vaca Domínguez, B., Zapata Álvarez, G. (2009). Mapa estratégico de inclusión financiera: Una herramienta de análisis. Bienestar y Política Social, 5(1): 119-121. https://es.scribd.com/document/329236921/Mapa-Estrategico-de-Inclusion-Financiera-PDf
Jaffee, D,M. & J.E. Stiglitz (1990). Credit rationing. B.M. Friedman and F.H. Hahn (eds.), Hand-book of monetary economics, v.2, pp. 838-888. Amsterdam: Elsevier. DOI: 10.1016/0164-
(93)90040-S
Kandie, D. & Islam, K.J. (2022). A new era of microfinance: The digital microcredit and its impact on poverty. Journal of International Development, 34(3): 469–492. DOI: 10.1002/jid.3607
Khera, P., Ng, S., Ogawa, S. & Sahay, R. (2021). Measuring digital financial inclusion in emerging market and developing economies: A new index. IMF Working Paper (21/90). https://www.elibrary.imf.org/view/journals/001/2021/090/article-A001-en.xml
Klapper, L. & Kayag, P.R. (2022). Responsible finance and its role in improving financial resilience and well-being. Blog Let’s Talk Development, The World Bank. November 2.
Levine, R. (1997). Financial development and economic growth: Views and agenda. Journal of Economic Literature, 35(2): 688-726. https://econpapers.repec.org/RePEc:aea:jeclit:v:35:y:1997:i:2:p:688-726
Lundberg, S.M., & Lee, S.I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30. DOI: 10.48550/arXiv.1705.07874
Lundberg, S.M., Erion, G., Chen, H., DeGrave, A. et al. (2020). From local explanations to global understanding with explainable AI for trees. Nature machine Intelligence, 2(1): 56-67. DOI: 10.1038/s42256-019-0138-9
Maldonado, J.H., Moreno, R., González-Vega, C. & Gómez-Soto, F. (2023). Servicios financieros para pueblos indígenas. Perspectiva desde la demanda. Working paper. Bogotá, Colombia: Fundación Capital. https://fundacioncapital.org/wp-content/uploads/2024/12/Resumen-Demanda-de-servicios-financieros-de-pueblos-indigenas-de-Colombia-y-Ecuador.pdf
Mayer M. (2024). Shapviz: SHAP Visualizations. R package version 0.9.3. https://CRAN.R-project.org/package=SHAPviz.
Mayer M. & Watson, D. (2023). Kernelshap: Kernel SHAP. R package version 0.4.1. https://CRAN.R-project.org/package=kernelSHAP
Niño Zarazua, M., Arquemin, A. & Castellani, D. (2024). Implementing financial health: creating mutual success for financial service providers and clients. Centre for Development Studies Report. Luxemburg: European Microfinance
Platform. https://researchportal.bath.ac.uk/en/publications/implementing-financial-health-creating-mutual-success-for-financi
Popov, Alexander (2017). Evidence on finance and economic growth. European Central Bank Working Paper (2115). https://www.ecb.europa.eu/pub/PDf/scpwps/ecb.wp2115.en.PDf
Rojas Torrico, P. & Ruesta Chunga, C. (2019). ¿Influye la regulación en las microfinanzas y en la inclusión financiera? Lecciones desde Bolivia, Ecuador y Perú. Tesina, Máster en Microfinanzas e Inclusión Financiera. Universidad Autónoma de Madrid.
Shapley, L.S., (1953). A value for n-person games. In: H.W. Kuhn A.W. Tucker (eds.). Contributions to the theory of games, (v.2, pp. 307–317). Princeton, NJ: Princeton University Press.
Shaw, E.S. (1973). Financial deepening in economic development. Oxford: Oxford University Press.
Siwale, J. & Godfroid, C. (2021). Digitising microfinance: on the route to losing the traditional ‘human face’ of microfinance institutions. Oxford Development Studies, 50(2): 177-191. DOI: 10.1080/13600818.2021.1998409
Soria, M. del P., Hernandez, E. & Ciacci, R. (2020). Use of financial diaries to understand small-holder investment finance. A cross-country analysis in Mozambique, Tanzania and Pakistan. Agricultural Finance Review, 80(1): 110-133. DOI: 10.1108/AFR-03-2018-0022
Suri, T. (2017). Mobile money. Annual Review of Economics, 9: 497-520. DOI: 10.1146/annurev-economics-063016-103638
Therneau T. and Atkinson B. (2022). Rpart: Recursive Partitioning and Regression Trees. R package version 4.1.16. https://CRAN.R-project. org/package=rpart
Toomet, O. and Henningsen, A. (2008). Sample selection models in R: Package sample selection. Journal of Statistical Software, 27(7): 1-23. DOI: 10.18637/jss.v027.i07
Van Hove, L. & Dubus, A. (2019). M-PESA and financial inclusion in Kenya: Of paying comes saving? Sustainability, 11(3): 568. DOI: 10.3390/su11030568
Vivalt, E. (2015). Heterogeneous treatment effects in impact evaluation. American Economic Review, 105(5): 467–470. DOI: 10.1257/aer.p20151015
Von Pischke, J.D. and Adams, D.W (1980). Fungibility and the design and evaluation of agricultural credit projects. American Journal of Agricultural Economics, 62(4): 719-726. DOI: 10.2307/1239770
Downloads
Published
Versions
- 2024-12-17 (2)
- 2024-12-17 (1)
How to Cite
Issue
Section
License
Copyright (c) 2024 Claudio González-Vega
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
El contenido publicado en EconoQuantum se encuentra bajo una Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.