Estimating the effect of climate on agriculture with the productive value of agricultural land

Authors

  • Jesús Arellano-González Banco de México.

DOI:

https://doi.org/10.18381/eq.vi21i2.7344

Abstract

Objective: the Ricardian model, in which market land values are modeled as a function of climate, has been estimated extensively in the context of developing countries where its core assumptions are likely to fail due to missing or incomplete markets. This article proposes a new measure of land valuation that better reflects agricultural productivity in such contexts: the Productive Value of Agricultural Land (PVAL). Methodology: a three-step empirical strategy is applied to data from a survey of Mexican rural households. The first step is the estimation of an agricultural production function. In the second step, parameter estimates are used to calculate PVAL. In the third step, PVAL is used as the dependent variable in a Ricardian regression. Results: suggests that PVAL increases with more precipitation and decreases with by extreme heat. When the Ricardian regression is estimated using market land values, the positive effect of precipitation is underestimated and the effect of extreme heat on land productivity is null. Limitations: omitted variables bias could still influence the Ricardian estimates obtained using PVAL. Originality: a novel version of the Ricardian model is estimated, one that does not rely on market values of land. Conclusions: failing to account for the market setting of agricultural producers, particularly in developing countries, may lead to an underestimation of the effects of climate change in agricultural productivity.

Downloads

Download data is not yet available.

References

Arslan, A., & Taylor, J. E. (2009). Farmers’ subjective valuation of subsistence crops: The case of traditional maize in Mexico. American Journal of Agricultural Economics, 91(4), 956–972. https://doi.org/10.1111/j.1467-8276.2009.01323.x

Auffhammer, M. (2022). Climate Adaptive Response Estimation: Short and long run impacts of climate change on residential electricity and natural gas consumption. Journal of Environmental Economics and Management, 114(102669), 102669. https://doi.org/10.1016/j.jeem.2022.102669

Auffhammer, M., Hsiang, S. M., Schlenker, W., & Sobel, A. (2013). Using weather data and climate model output in economic analyses of climate change. Review of Environmental Economics and Policy, 7(2), 181–198. https://doi.org/10.1093/reep/ret016

Bareille, F., & Chakir, R. (2023). The impact of climate change on agriculture: A repeat-Ricardian analysis. Journal of Environmental Economics and Management, 119(102822). https://doi.org/10.1016/j.jeem.2023.102822

Banxico. (2023). Información económica y financiera. Retrieved from https://www.banxico.org.mx/Indicadores/consulta/Instrumentos.action

Binder, C. (2015). Mexico’s Second Land Reform. Berkeley Review of Latin American Studies. https://clacs.berkeley.edu/mexico-de-janvrymexicos-second-land-reform

Burke, M., Craxton, M., Kolstad, C. D., & Onda, C. (2016). Some research challenges in the economics of climate change. Climate Change Economics, 07(02). https://doi.org/10.1142/s2010007816500020

Burke, M., & Emerick, K. (2016). Adaptation to climate change: Evidence from US agriculture. American Economic Journal: Economic Policy, 8(3), 106–140. https://doi.org/10.1257/pol.20130025

Comisión Mexicana de Defensa y Promoción de los Derechos Humanos (CMDPH). (2018). Episodios de desplazamiento forzado masivo en México: Informe 2017. https://www.cmdpdh.org/publicaciones-pdf/cmdpdh-informe-de-desplazamiento-interno-masivo-en-mexico-2017.pdf

Carter, M. R. (1988). Equilibrium credit rationing of small farm agriculture. Journal of Development Economics, 28(1), 83–103. https://doi.org/10.1016/0304-3878(88)90015-6

Carter, M. R. (1994). Sequencing capital and land market reforms for broadly based growth. Research in Agricultural and Applied Economics. https://doi.org/10.22004/AG.ECON.12689

de Janvry, A., Emerick, K., Gonzalez-Navarro, M., & Sadoulet, E. (2015). Delinking land rights from land use: Certification and migration in Mexico. American Economic Review, 105(10), 3125–3149. https://doi.org/10.1257/aer.20130853

de Janvry, A., Gonzalez-Navarro, M., & Sadoulet, E. (2014). Are land reforms granting complete property rights politically risky? Electoral outcomes of Mexico’s certification program. Journal of Development Economics, 110, 216–225. https://doi.org/10.1016/j.jdeveco.2013.04.003

Deschênes, O., & Greenstone, M. (2007). The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather. American Economic Review, 97(1), 354–385. https://doi.org/10.1257/000282807780323604

Deschênes, O., & Greenstone, M. (2012). The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather: Reply. American Economic Review, 102(7), 3761–3773. https://doi.org/10.1257/aer.102.7.3761

Duan, N. (1983). Smearing estimate: A nonparametric retransformation method. Journal of the American Statistical Association, 78(383), 605–610. https://doi.org/10.1080/01621459.1983.10478017

Eswaran, M., & Kotwal, A. (1986). Access to Capital and Agrarian Production Organisation. Economic journal (London, England), 96(382), 482. https://doi.org/10.2307/2233128

FAO. 2007. Digital Soil Map of the World. Food and Agriculture Organization of the United Nations. Data retrieved from https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/metadata/446ed430-8383-11dbb9b2-000d939bc5d8

Feder, G., & Nishio, A. (1998). The benefits of land registration and titling: Economic and social perspectives. Land Use Policy, 15(1), 25–43. https://doi.org/10.1016/s0264-8377(97)00039-2

Fisher A.C., W.M. Hanemann, M.J. Roberts & W. Schlenker. 2009. Climate change and agriculture reconsidered. University of California at Berkeley, Department of Agricultural and Resource Economics. CUDARE Working Paper 1080.

Fisher, A. C., Hanemann, W. M., Roberts, M. J., & Schlenker, W. (2012). The economic impacts of climate change: Evidence from agricultural output and random fluctuations in weather: Comment. American Economic Review, 102(7), 3749–3760. https://doi.org/10.1257/aer.102.7.3749

Galindo, L.M., O. Reyes & J.E. Alatorre. (2015). Climate change, irrigation and agricultural activities in Mexico: A Ricardian analysis with panel data. Journal of Development and Agricultural Economics 7(7): 262-273.

Gammans, M., Mérel, P., & Ortiz-Bobea, A. (2017). Negative impacts of climate change on cereal yields: statistical evidence from France. Environmental research letters, 12(5). https://doi.org/10.1088/1748-9326/aa6b0c

Guiteras, R. (2009). The impact of climate change on Indian agriculture. Department of Economics, University of Maryland, College Park, Maryland. https://nswai.org/docs/The_Impact_of_Climate_Change_on_Indian_Agriculture.pdf

Hertel, T. W., & Lobell, D. B. (2014). Agricultural adaptation to climate change in rich and poor countries: Current modeling practice and potential for empirical contributions. Energy Economics, 46, 562–575. https://doi.org/10.1016/j.eneco.2014.04.014

Ibáñez, A. M., & Querubín, P. (2004). Acceso a tierras y desplazamiento forzado en Colombia. Documento CEDE 2004–23, Centro de Estudios sobre Desarrollo Económico, Bogotá.

Instituto Nacional de Estadística y Geografía (INEGI). (2022). Censo Agrícola, Ganadero y Forestal 2022. Data retrieved from https://www.inegi.org.mx/programas/ca/2022/#tabulados

Instituto Nacional de Estadística y Geografía (INEGI). (2019). Encuesta Nacional Agropecuaria 2019. Data retrieved from https://www.inegi.org.mx/programas/ena/2019/#-tabulados

Instituto Nacional de Estadística y Geografía (INEGI). (2010). Marco geoestadístico 2010 versión 5.0 (Censo de Población y Vivienda 2010).

IPCC. (2023). Summary for Policymakers. In: Climate Change 2023: Synthesis Report. A Report of the Intergovernmental Panel on Climate Change. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing Team, H. Lee and J. Romero (eds.). IPCC, Geneva, Switzerland, 36 pages. (in press).

Jessoe, K., Manning, D. T., & Taylor, J. E. (2018). Climate change and labour allocation in rural Mexico: Evidence from annual fluctuations in weather. Economic Journal (London, England), 128(608), 230–261. https://doi.org/10.1111/ecoj.12448

Kagin, J., Taylor, J. E., & Yúnez-Naude, A. (2016). Inverse productivity or inverse efficiency? Evidence from Mexico. The Journal of Development Studies, 52(3), 396–411. https://doi.org/10.1080/00220388.2015.1041515

Kurukulasuriya, P., & Mendelsohn, R. (2007). A ricardian analysis of the impact of climate change on African cropland. The World Bank. https://doi.org/10.1596/1813-9450-4305

Levinsohn, J., & Petrin, A. (2003). Estimating production functions using inputs to control for unobservables. The Review of Economic Studies, 70(2), 317–341. https://doi.org/10.1111/1467-937x.00246

Lewis, J. B., & Linzer, D. A. (2005). Estimating regression models in which the dependent variable is based on estimates. Political Analysis: An Annual Publication of the Methodology Section of the American Political Science Association, 13(4), 345–364. https://doi.org/10.1093/pan/mpi026

Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate trends and global crop production since 1980. Science (New York, N.Y.), 333(6042), 616–620. https://doi.org/10.1126/science.1204531

Lybbert, T. J., & Sumner, D. A. (2012). Agricultural technologies for climate change in developing countries: Policy options for innovation and technology diffusion. Food Policy, 37(1), 114–123. https://doi.org/10.1016/j.foodpol.2011.11.001

Mendelsohn, R. (2014). The impact of climate change on agriculture in Asia. Journal of Integrative Agriculture, 13(4), 660–665. https://doi.org/10.1016/s2095-3119(13)60701-7

Mendelsohn, R., Nordhaus, W. D. & Shaw, D. (1994), The impact of global warming on agriculture: A ricardian analysis. American economic review, 84, pp. 753-71. (2017). En Climate Change (pp. 131–150). Routledge.

Mendelsohn, R., Nordhaus, W. D. & Shaw, D. G. (1993). The Impact of Climate on Agriculture: A Ricardian Approach. In Costs, impacts, and benefits of CO2 mitigation, Y. Kaya, N. Nakicenovic, W. Nordhaus, and F. Toth, eds. Luxemburg, Austria: International Institute of Applied Systems Analysis, pp. 173-208.

Mendelsohn, R., Arellano-Gonzalez, J., & Christensen, P. (2010). A Ricardian analysis of Mexican farms. Environment and Development Economics, 15(2), 153–171. https://doi.org/10.1017/s1355770x09990143

Mendelsohn, R. O., & Massetti, E. (2017). The use of cross-sectional analysis to measure climate impacts on agriculture: Theory and evidence. Review of Environmental Economics and Policy, 11(2), 280–298. https://doi.org/10.1093/reep/rex017

Moore, F. C., & Lobell, D. B. (2014). Adaptation potential of European agriculture in response to climate change. Nature Climate Change, 4(7), 610–614. https://doi.org/10.1038/nclimate2228

Olley, G. S., & Pakes, A. (1996). The dynamics of productivity in the telecommunications equipment industry. Econometrica: Journal of the Econometric Society, 64(6), 1263. https://doi.org/10.2307/2171831

Ortiz-Bobea, A. (2020). The role of nonfarm influences in Ricardian estimates of climate change impacts on US agriculture. American Journal of Agricultural Economics, 102(3), 934–959. https://doi.org/10.1093/ajae/aaz047

Ortiz-Bobea, A., & Just, R. E. (2013). Modeling the structure of adaptation in climate change impact assessment. American Journal of Agricultural Economics, 95(2), 244–251. https://doi.org/10.1093/ajae/aas035

Registro Agrario Nacional (RAN). (2023). Estadística Agraria. http://www.ran.gob.mx/ran/index.php/sistemas-de-consulta/estadistica-agraria

Secretaría de Agricultura y Desarrollo Rural (SADER). (2017). El ciclo de cultivo Primavera/ Verano. https://www.gob.mx/agricultura/es/articulos/el-ciclo-de-cultivo-primavera-verano

Servicio de Información Agroalimentaria y Pesquera (SIAP). (2023). Estadística de Producción Agrícola. Data retrieved from http://infosiap.siap.gob.mx/gobmx/datosAbiertos_a.php

Sadoulet, E., & de Janvry, A. (2003). Quantitative Development Policy Analysis (2a ed.). Johns Hopkins University Press.

Sanghi, A., & Mendelsohn, R. (2008). The impacts of global warming on farmers in Brazil and India. Global Environmental Change: Human and Policy Dimensions, 18(4), 655–665. https://doi.org/10.1016/j.gloenvcha.2008.06.008

Seifert, C. A., & Lobell, D. B. (2015). Response of double cropping suitability to climate change in the United States. Environmental research letters, 10(2), 024002. https://doi.org/10.1088/1748-9326/10/2/024002

Schlenker, W., Hanemann, W. M., & Fisher, A. C. (2005). Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach. The American Economic Review, 95(1), 395–406. http://www.jstor.org/stable/4132686

Schlenker, W., Hanemann, W. M., & Fisher, A. C. (2006). The impact of global warming on U.s. agriculture: An econometric analysis of optimal growing conditions. The Review of Economics and Statistics, 88(1), 113–125. https://doi.org/10.1162/rest.2006.88.1.113

Schlenker W. & M.J. Roberts. 2009. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proceedings of the National Academy of sciences 106(37):15594-8.

Seo, S.-N. N., Mendelsohn, R., & Munasinghe, M. (2005). Climate change and agriculture in Sri Lanka: a Ricardian valuation. Environment and Development Economics, 10(5), 581–596. https://doi.org/10.1017/s1355770x05002044

Seo, N. y R. Mendelsohn. 2008a. A Ricardian Analysis of the Impact of Climate Change on Latin American Farms. World Bank Policy Research Series Working Paper 4163. World Bank, Washington DC., USA.

Seo, N. y R. Mendelsohn. 2008b. A Ricardian Analysis of the Impact of Climate Change on South American Farms. Chilean Journal of Agricultural Research 68(1): 69-79.

Severen, C., Costello, C., & Deschênes, O. (2018). A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts? Journal of Environmental Economics and Management, 89, 235–254. https://doi.org/10.1016/j.jeem.2018.03.009

Skoufias, E. (1994). Using shadow wages to estimate labor supply of agricultural households.American Journal of Agricultural Economics, 76(2), 215–227. https://doi.org/10.2307/1243623

Taylor, J. E., & Adelman, I. (2003). Agricultural Household Models: Genesis, Evolution, and Extensions. Review of economics of the household, 1(1/2), 33–58. https://doi.org/10.1023/a:1021847430758

The World Bank Group (TWBG). (2023). Climate Risk Country Profile: Mexico.

Van Beveren, I. (2012). Total factor productivity estimation: A practical review: Total factor productivity estimation. Journal of Economic Surveys, 26(1), 98–128. https://doi.org/10.1111/j.1467-6419.2010.00631.x

Welch, J. R., Vincent, J. R., Auffhammer, M., Moya, P. F., Dobermann, A., & Dawe, D. (2010). Rice yields in tropical/subtropical Asia exhibit large but opposing sensitivities to minimum and maximum temperatures. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14562–14567. https:// doi.org/10.1073/pnas.1001222107

Downloads

Published

2024-06-30

How to Cite

Arellano-González, J. (2024). Estimating the effect of climate on agriculture with the productive value of agricultural land. EconoQuantum, 21(2), 47–76. https://doi.org/10.18381/eq.vi21i2.7344

Metrics