A conditional heteroscedastic VaR approach with alternative distributions

Authors

  • Ramona Serrano Bautista Universidad Panamericana
  • Leovardo Mata Mata Universidad Anáhuac

DOI:

https://doi.org/10.18381/eq.v17i2.7125

Keywords:

VaR, garch, Stable distribution, Generalized Skew t distribution, Normal

Abstract

Objective: The purpose of this paper is to explored different distributions in conditional Value at Risk (VaR) modeling as an option in the Mexican market. Methodology: We estimate a GARCH model under the Gaussian, Normal Inverse Gaussian, Skew Generalized t and the Stable distribution assumption, then we implement the model in predicting one-day ahead VaR and finally we examine the performance among the four VaR models during a period of high volatility.   Results: The backtesting result confirms that the stable-VaR approach outperforms the other models in the VaR’s prediction at 99% confidence level. Limitations: Although the VaR is a widely used risk measure is not a coherent risk measure, for this reason, a natural extension of our work should be to estimate the expected shortfall and this may produce different insights. Conclusions: Our findings reveal that models that consider some empirical characteristic of financial returns such as leptokurtic, volatility clustering and asymmetry improve the VaR predicting capacity. This finding is important in the search of more robust approaches for VaR estimates.   Recepción: 09/08/2018 Aceptación: 31/10/2019

Downloads

Download data is not yet available.

References

Bali, T.G., & Theodossiou, P. (2007). A conditional-SGT-VaR approach with alternative GARCH models. Annals of Operations Research (151), 241-267. DOI: https://doi.org/10.1007/s10479-006-0118-4

Bølviken, E., & Benth, F.E. (2000). Quantification of risk in Norwegian stocks via the normal inverse Gaussian distribution. Proceedings of the AFIR 2000 Colloquium, Tromso, Norway (pp. 87-98). Retrieved from http://www.actuaries.org/AFIR/Colloquia/Tromsoe/Bolviken_Benth.pdf

Christoffersen, P.F. (1998). Evaluating interval forecasts. International Economic Review, 39 (4), 841-862.

Climent Hernández, J.A., Venegas Martínez, F., & Ortiz Arango, F. (2015). Portafolio óptimo y productos estructurados en mercados a-estables un enfoque de minimización de riesgo. Revista Nicolaita de Estudios Económicos, 10 (2), 81-110.

Corlu, G., Meterelliyoz, M., & Tiniç, M. (2016). Empirical distributions of daily equity index returns: A comparison. Expert Systems with Applications, 54, 170-192. DOI: https://doi.org/10.1016/j.eswa.2015.12.048

Devroye, L., & James, L. (2014). On simulation and properties of the stable law. Statistical Methods & Applications, 23 (3), 307-343. DOI: https://doi.org/10.1007/s10260-014-0260-0

Dias Curto, J., Castro Pinto, J., & Nuno Tavares, G. (2009). Modeling stock markets’ volatility using GARCH models with normal, student’s t and stable paretian distributions. Statistical Papers, 50 (2), 311-321. DOI: https://doi.org/10.1007/s00362-007-0080-5

Fama, E.F. (1965a). Portfolio analysis in a stable paretian market. Management Science, 11 (3), 404-419. DOI: https://doi.org/10.1287/mnsc.11.3.404

Fama, E. F. (1965b). The behavior of stock-market prices. The Journal of Business, 38(1), 34-105.Fofack, H., & Nolan, J.P. (1999). Tail behavior, modes and other characteristics of stable distributions. Extremes, 2, 39-58. DOI: https://doi.org/10.1023/A:1009908026279

Hansen, B. E. (1994). Autoregressive conditional density estimation. International Economic Review, 35 (3), 705-730.

Khindanova, I., Rachev, S., & Schwartz, E. (2001). Stable modeling of value at risk. Mathematical and Computer Modelling, 34, 1223-1259.

Kupiec, P.H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 3 (2) 73-84. DOI: https://doi.org/10.3905/jod.1995.407942

Liu, S.M., & Brorsen, B.W. (1995). Maximum likelihood estimation of a GARCH-stable model. Journal of Applied Economics, 10, 273-285.

Mandelbrot, B.B. (1963). The variation of certain speculative prices. The Journal of Business, 36, 394-419.

Mandelbrodt, B.B. (1967). The variation of some other speculative prices. The Journal of Business, 40, 394-419.

McCulloch, J.H. (1986). Simple consistent estimators of stable distribution parameters. Communications in Statistics - Simulation and Computation, 15 (4), 1109-1136. DOI: https://doi.org/10.1080/03610918608812563

Mittnik, S., Doganoglu, T., & Chenyao, D. (1999). Computing the probability density function of the stable Paretian distribution. Mathematical and Computer Modelling, 29 (10/12), 235-240. DOI: https://doi.org/10.1016/S0895-7177(99)00106-5

Mittnik, S., Paolella, M.S., & Rachev, S.T. (2000). Diagnosing and treating the fat tails in financial returns data. Journal of Empirical Finance, 7 (3/4), 389-416. DOI: https://doi.org/10.1016/S0927-5398(00)00019-0

Mohammadi, M. (2017). Prediction of α -stable GARCH and ARMA-GARCH-M models. Journal of Forecasting, 36 (7), 859-866. DOI: https://doi.org/10.1002/for.2477

Naka, A., & Oral, E. (2013). Stock return volatility and trading volume relationships captured with stable paretian GARCH and threshold GARCH models. Journal of Business & Economic Research, 11 (1), 47-53.

Nolan, J.P. (2001). Maximum likelihood estimation and diagnostics for stable distributions. In O.E. Barndorff-Nielsen, S.I. Resnick, & T. Mikosch (Eds.), Lévy Processes (pp. 379-400). Boston: Birkhäuser Boston. DOI: https://doi.org/10.1007/978-1-4612-0197-7_17

Nolan, J.P. (2014). Financial modeling with heavy-tailed stable distributions. Wiley Interdisciplinary Reviews: Computational Statistics, 6 (1), 45-55. DOI: https://doi.org/10.1002/wics.1286

Ortobelli, S., Huber, I., & Schwartz, E. (2002). Portfolio selection with stable distributed returns. Mathematical Methods of Operations Research, 55 (2), 265-300. DOI: https://doi.org/10.1007/s001860200182

Panorska, A., Mittnik, S., & Rachev, S.T. (1995). Stable GARCH models for financial time series. Applied Mathematics Letters, 8 (5), 33-37.

Rachev, S., & Han, S. (2000). Portfolio management with stable distributions. Mathematical Methods of Operation Research, 51, 341-352.

Schwert, G.W. (1989). Why does stock market volatility change over time? The Journal of Finance, 44 (5), 1115-1153.

Serrano Bautista, R., & Mata Mata, L. (2018). Valor en riesgo mediante un modelo heterocedástico condicional α-estable. Revista Mexicana de Economía y Finanzas, 13 (1), 1-25. DOI: https://doi.org/10.21919/remef.v13i1.257

Starica, C. (2003, diciembre). Is GARCH (1,1) as good a model as the accolades of the nobel prize would imply? (pp. 1-50). Retrieved from http://www.math.kth.se/matstat/seminarier/reports/M-exjobb10/100408.pdf

Theodossiou, P. (1998). Financial data and the skewed generalized T distribution. Management Science, 44 (12), 1650-1651.

Zolotarev, V.M. (1989). One-Dimensional stable distributions. Bulletin of the American Mathematical Society, 20 (2), 270-277.

Downloads

Published

2020-07-09 — Updated on 2022-01-19

How to Cite

Serrano Bautista, R., & Mata Mata, L. (2022). A conditional heteroscedastic VaR approach with alternative distributions. EconoQuantum, 17(2), 81–98. https://doi.org/10.18381/eq.v17i2.7125

Metrics