Markovian modeling to identify and to forecast the dynamics of the industrial production index from 1980 to 2018

Authors

  • Gustavo Cabrera González Universidad de Guadalajara
  • Adrián De León Arias Universidad de Guadalajara

DOI:

https://doi.org/10.18381/eq.v16i2.7120

Keywords:

Industrial production index, Markov switching, Bayesian analysis, Forecasting

Abstract

In this article, by Markov switching modeling we study the identification of unknown states and forecasting of the monthly industrial production index of Mexico from 1980 to 2018. Given that the data-sample is subject to strong economic and financial fluctuations, from a battery of auto-regressive models (linear and Markov switching parameters), the specification that best fits to data through the Bayes factor is chosen. The model selection of the monthly growth rates index leads to parameters (mean and volatility) change over time. A forecast exercise is carried out on the Markovian model of best fit to data. To measure the accuracy on the estimation, its efficiency is compared with the linear auto-regressive models on the same data. Results provide evidence that the mean of the forecasting errors (in-sample and out-sample) are lower than those of the linear auto-regressive model. The Bayesian methodology applied allows to estimate endogenously and accurately infer, despite of identification problems of Markov switching parameters, small number of observations in regimes, atypical data, number of regimes, and uncertainty in parameters subject to switch.   Recepción: 18/07/2018 Aceptación: 13/03/2019

Downloads

Download data is not yet available.

References

Andrews, D. & W. Ploberger (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica, 62 (6), 1383-1414.

Bauwens, L., Dufays, A. & Rombouts, J. V. (2014). Marginal likelihood for Markovswitching and change-point (garch) models. Journal of Econometrics, 178 (parte 3), 508-522.

Bazdresch, S. & Werner, A. (2005). Regime switching models for the Mexican peso. Journal of International Economics, 65 (1), 185-201.

Benavides, G. & Capistrn, C. (2012). Forecasting exchange rate volatility: The superior performance of conditional combinations of time series and option implied forecasts. Journal of Empirical Finance, 19 (5), 627-639.

Boot, T. & Pick, A. (2017). Optimal forecasts from Markov switching models. Journal of Business & Economic Statistics, 36 (4), 1-15.

Cabrera, G., Coronado, S., Rojas, O. & Romero-Meza, R. (2018). A Bayesian approach to model changes in volatility in the Mexican stock exchange index. Applied Economics, 50 (15), 1716-1724.

Carrasco, M., Hu, L. & Ploberger, W. (2014). Optimal test for Markov switching parameters. Econometrica, 82 (2), 765-784.

Clements, M. P. & Krolzig, H. M. (1998). A comparison of the forecast performance of Markov-switching y threshold autoregressive models of us gnp. The Econometrics Journal, 1 (1), 47-75.

De León Arias, A. (2004). El crecimiento de México y su interdependencia con Estados Unidos. Comercio Exterior, 54 (7), 612-619.

Diebold, F. & Rudebusch, G. (1999). Business cycles: Durations, dynamics, and forecasting. New Jersey, Estados Unidos: Princeton University Press.

Engel, C. (1994). Can the Markov switching model forecast exchange rates? Journal of International Economics, 36 (1), 151-165.

Engel, C. & Kim, C. J. (1999). The long-run u.s./u.k. real exchange rate. Journal of Money, Credit and Banking, 31 (3), 335-356.

Frühwirth-Schnatter, S. (2001). Fully Bayesian analysis of switching gaussian state space models. Annals of the Institute of Statistical Mathematics, 53 (1), 31-49.

Frühwirth-Schnatter, S. (2004). Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques. Econometrics Journal, 7 (1), 143-167.

Frühwirth-Schnatter, S. (2006). Finite mixture and Markov switching models (Springer Series in Statistics). Nueva York, Estados Unidos: Springer.

Hamilton, J. D. (1989). A new approach to the economic analysis of nonstationary time series y the business cycle. Econometrica, 57 (2), 357-384.

Hamilton, J. D. (1994). The time series analysis. Estados Unidos: Princeton University Press.

Hamilton, J. D. (2005). What’s real about the business cycle? Working Paper 11161. Estados Unidos: National Bureau of Economic Research.

Hamilton, J. D. & Raj, B. (2002). Advances in Markov-switching models: Applications in business cycle research and finance. Estados Unidos: Springer.

Hamilton, J. D. & Susmel, R. (1994). Autoregressive conditional heteroskedasticity y changes in regime. Journal of Econometrics, 64 (1), 307-333.

Hansen, B. (1996). Erratum: The likelihood ratio test under nonstard conditions: Testing the Markov switching model of gnp. Journal of Applied Econometrics, 11 (2), 195-198.

Heath, E. B. & Kopchak, S. J. (2015). The response of the Mexican equity market to us monetary surprises. Journal of Emerging Market Finance, 14 (2), 87-111.

Islas-Camargo, A., Cortez, W. W. & Sanabria Flores, T. P. (2017). Is Mexico’s forward exchange rate market efficient? Revista Mexicana de Economía y Finanzas, 13 (2), 247-272.

Kass, R. E. & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90 (430), 773-795.

Kaufmann, S. & Frühwirth-Schnatter, S. (2002). Bayesian analysis of switching arch models. Journal of Time Series Analysis, 23 (4), 425-458.

Kim, C. J. & Nelson, C. R. (1999a). Has the U.S. economy become more stable? A Bayesian approach based on a Markov-switching model of the business cycle. The Review of Economics and Statistics, 81 (4), 608-616.

Kim, C. J. & Nelson, C. R. (1999b). State-Space models with regime switching: Classical and Gibbs-sampling approaches with applications (Volumen 1). Boston, Estados Unidos: mit Press.

López-Herrera, F. (2004). Modelado de la volatilidad y pronóstico del índice de precios y cotizaciones de la bolsa mexicana de valores. Contaduría y Administración (213), 43-72.

López-Herrera, F. & Venegas-Martínez, F. (2011). Métodos no lineales en series económicas y financieras. Modelado de la volatilidad del mercado mundial de capitales durante la crisis mundial mediante una cadena de Markov. Guadalajara, México: Universidad de Guadalajara.

López-Herrera, F., Ortiz-Arango, F. & Venegas-Martínez, F. (2011). Crecimiento y desarrollo económico en México. Modelado de la volatilidad del índice de precios y cotizaciones de la Bolsa Mexicana de Valores con cambios markovianos de régimen. México: Benemérita Universidad Autónoma de Puebla.

Mejía-Reyes, P. & Díaz-Carreño, M. A. (2010). Búsqueda de asimetrías a lo largo del ciclo económico de México. Investigación Económica, 69 (271), 15-42.

Mejía-Reyes, P., Martínez Gómez, J. A. & Rendón Balboa, W. L. (2005). Ciclos económicos clásicos en la producción industrial de México. Investigación Económica, 64 (254), 91-124.

Meng, X. l. & Wong, W. H. (1996). Simulating ratios of normalizing constants via a simple identity: A theoretical exploration. Statistica Sinica, 6 (4), 831-860.

Timmermann, A. (2000). Moments of Markov switching models. Journal of Econometrics, 96 (1), 75-111.

Published

2019-08-06 — Updated on 2021-12-21

How to Cite

Cabrera González, G., & De León Arias, A. (2021). Markovian modeling to identify and to forecast the dynamics of the industrial production index from 1980 to 2018. EconoQuantum, 16(2), 23–41. https://doi.org/10.18381/eq.v16i2.7120

Metrics