Convexity and marginal contributions in bankruptcy games

Authors

  • Leobardo Plata-Pérez Facultad de Economía, UASLP
  • Joss Sánchez-Pérez UASLP

DOI:

https://doi.org/10.18381/eq.v8i12.129

Abstract

En este trabajo analizamos dos definiciones naturales de convexidad para los juegos de bancarrota, una de ellas fue introducida por Aumann y Maschler (1985). En particular, mostramos que la convexidad, entendida como contribuciones marginales crecientes, no se satisface en el juego presentado por estos autores. Además proponemos un juego alternativo para capturar situaciones de bancarrota y caracterizamos el antinúcleo de este juego; usando la teoría de la dualidad para juegos cooperativos probamos que el núcleo, el antinúcleo y el valor de Shapley coinciden con el del juego estudiado por Aumann and Maschler (1985).

Downloads

Download data is not yet available.

References

Aumann, R. J. (2010). “Some non-superadditive games, and their Shapley values, in the Talmud“, International Journal of Game Theory, 39, 3 - 10.

Aumann, R. J., Maschler, M. (1985). “Game theoretic analysis of a bankruptcy problem from the Talmud”, Journal of Economic Theory, 36, 195 -213.

Driessen, T. (1988). Cooperative games, solutions and applications. Theory and Decision Library, Springer.

Funaki, Y. (1994). “Dual axiomatizations of solutions of cooperative games”, Working paper 13, Faculty of Economics, Tokyo University.

Herrero, C., Villar, A. (2001). “The three musketeers: four classical solutions to bankruptcy problems”, Mathematical Social Sciences 42, 307-328.

O’Neill, B. (1982). “A problem of rights arbitration from the Talmud”, Mathematical Social Sciences, 2, 345 - 371.

Peleg, B. and Sudhölter, P. (2007). “Introduction to the theory of cooperative games”, Springer, 2nd edition.

Peleg, B. (1985). “An axiomatization of the core of cooperative games without side payments”, Journal of Mathematical Economics, 14, 203 - 214.

Shapley, Ll. (1953). “A value of a n-person games”, Contributions to the Theory of Games, Annals of Math.Studies, Princeton, 28, 307 - 317.

Shapley, Ll. (1971). “Cores of convex games”, International Journal of Game Theory, 1(1), 11 - 26.

Thomson, W. (2003). “Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey”, Mathematical Social Sciences, 45, págs. 249-297.

Published

2011-11-30

How to Cite

Plata-Pérez, L., & Sánchez-Pérez, J. (2011). Convexity and marginal contributions in bankruptcy games. EconoQuantum, 8(1-2), 61–72. https://doi.org/10.18381/eq.v8i12.129

Metrics