Prospectivas del Mercado de Bioetanol en México

Autores/as

  • Héctor Núñez División de Economía. Centro de Investigación y Docencia Económicas (CIDE). Aguascalientes, México. Dirección General de Investigación Económica Banco de México. Mérida, México.

DOI:

https://doi.org/10.18381/eq.v19i2.7258

Palabras clave:

México, Sector Agrícola, Bioetanol, Gasolina, Políticas para combustibles

Resumen

Objetivo: Analizar los efectos económicos de las políticas de bioetanol en México, donde ha habido varios intentos de introducir biocombustibles en el mercado sin éxito. Metodología: Se desarrolla un modelo de programación matemática de precios endógenos con énfasis en los sectores agrícola y de combustibles, que están integrados en un modelo de equilibrio parcial espacial, multirregional y multiproducto. El bioetanol se puede producir a partir de un cultivo específico y de residuos agroindustriales. Se consideran tres alternativas de política, así como un caso base en el que, como ahora, los combustibles líquidos se derivan todos de fuentes fósiles. La primera alternativa consiste en subsidios a los productores de biocombustibles, la segunda en mandatos de mezcla y la tercera en una combinación de ambas políticas. Resultados: Los resultados muestran algunas pérdidas para los consumidores de combustibles y productos agrícolas, que no se compensan con las ganancias ambientales y de los productores de etanol. Limitaciones e implicaciones: Los datos del año base deberían ser más recientes, pero es muy difícil reunir toda esta cantidad de información para un año más reciente. Como cualquier modelo de equilibrio parcial, el análisis ignora los efectos fuera de los mercados incluidos en el modelo. Originalidad y valor: Modelo desarrollado para esta investigación y es el primer estudio económico sobre el bioetanol en México que llega a un análisis tan detallado. Conclusiones: Es posible desarrollar un mercado de bioetanol en México, pero se requiere alguna redistribución para compensar a los grupos que pierden si se quiere tener estas políticas sostenibles en el largo plazo.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Ali, M., 2006. Chili (Capsicum spp.) food chain analysis: Setting research priorities in asia AVRDC-WorldVegetableCenter.

Beach, R. H., McCarl, B. A., 2010. U.S. Agricultural and Forestry Impacts of the Energy Independence and Security Act: FASOM Results and Model Description. Research Triangle Park, NC: RTI International (0210826).

Brown, M. G., 2010. European Demand for Orange Juice. Research Papers 2010 104349, Florida Department of Citrus, https://ideas.repec.org/p/ags/fdcr10/104349.html.

Cáceres-Farfán, M., Lappe, P., Larqué-Saavedra, A., Magdub-Méndez, A., Barahona-Pérez, L., 2008. Ethanol production from henequen (agave fourcroydes lem.) juice and molasses by a mixture of two yeasts. Bioresource Technology 99(18), 9036–9039.

Chen, X., Huang, H., Khanna, M., Onal, H., 2011. Meeting the Mandate for Biofuels: Implications for Land Use, Food and Fuel Prices. The Intended and Unintended Effects of U.S. Agricultural and Biotechnology Policies pp. 223–267.

Chen, X., Onal, H., 2012. Modeling agricultural supply response using mathematical programming and crop mixes. American Journal of Agricultural Economics 94 (3), 674–686.

Comtrade, 2015. International Trade Statistics Database. http://comtrade.un.org/data/, (Accessed September 2015).

CRM, 2015. Consejo Regulador del Mezcal, http://www.crm.org.mx,(Accessed March 2015).

Crotte, A., Noland, B., Graham, D. J., 2010. An analysis of gasoline demand elasticities at the national and local levels in mexico. Energy Policy 8 (38), 4445–4456.

CRT, 2015. Consejo Regulador del Tequila, https://www.crt.org.mx/EstadisticasCRTweb/, (Accessed March 2015).

Davis, S. C., Dohleman, F. G., Long, S. P., 2011. The global potential for agave as a biofuel feedstock. GCB Bioenergy 3(1), 68–78.

EIA, 2019. Energy Information Administration. https://www.eia.gov/, (Accessed Feb 2020).

Elobeid, A., Carriquiry, M., Fabiosa, J. F., 2011. Global biofuel expansion and the demand for brazilian land: Intensification versus expansion. AAEA’s 2011 Annual Meeting.

EPA, 2010. Renewable Fuel Standard Program (RFS2) Regulatory Impact Analysis. Technical report, Environmental Protection Agency, (EPA-420-R-10-006).

Euromonitor Internacional, 2014. Price elasticities in alcoholic drinks, http://blog.euromonitor.com/2014/08/price-elasticities-in-alcoholic-drinks.html, (accessed may 2015).

Fabiosa, J. F., Beghin, J. C., Dong, F., Elobeid, A., Tokgoz, S., Yu, T.-H., 2010. Land allocation effects of the global ethanol surge: predictions from the international fapri model. Land Economics 86(4), 687–706.

FAPRI, 2015. Food and agricultural policy research institute-elasticity database, http://www.fapri.iastate.edu/tools/elasticity.aspx, (Accessed February 2015).

Fernandez Madrigal, A., 2015. Situacion de méxico http://www.ianas.org/PDF/MexicoSituaciondeMexicoFernandezMadrigal.pdf.

Galindo, L. M., 2005. Short- and long-run demand for energy in mexico: a cointegration approach. Energy Policy 9 (33), 1179–1185.

Haniotis, T., Baffes, J., Ames, G. C. W., 1988. The demand and supply of U.S. agri- cultural exports: The case of wheat. Southern Journal of Agricultural Economics http://ageconsearch.umn.edu/bitstream/29256/1/20020045.pdf.

Havranek, T., Irzova, Z., Janda, K., 2012. Demand of gasoline is more price-ineslastic than commonly thought. Energy Economics pp. 201–207.

Hoffman, L., Livezey, J., 1987. The U.S. Oats Industry. Technical report, The ERS. IndexMundi, 2014. http:indexmundi.com, (Accessed May 2015).

Khanna, M., Crago, C., Black, M., 2011. Can Biofuels be a Solution to Climate Change? The Implications of Land Use Change Related Emissions for Policy. Interface Focus April 6(1), 233–247.

Maldonado-Sánchez, A. E., 2009. Improved agave cultivars (agave angustifolia haw) for profitable and sustainable bioethanol production in México. Chapingo Autonomous University.

Martin, L. J., 1981. Quadratic single and multi-commodity models of spatial equilibrium: A simplified exposition. Canadian Journal of Agricultural Economics/Revue Canadienne D’agroeconomie 29(1), 21–48.

McCarl, B. A., 1982. Cropping activities in agricultural sector models: A methodological proposal. American Journal of Agricultural Economics 64(4), 768–772.

McCarl, B. A., Spreen, T. H., 1980. Price Endogenous Mathematical Programming as a Tool for Sector Analysis. American Journal of Agricultural Economics 62(1), 87–102.

Meyers, W. H., Devadoss, S., Helmar, M., 1991. The world soybean trade model: Specification, estimation, and validation. CARD Technical Reports. Paper 25.

Munoz, A., Esteban, L., Riley, M. R., 2008. Utilizationof cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (pha) bioplastics by saccharophagus degradans. Biotechnology and bioengineering 100(5), 882–888.

Nassar, A. M., Moreira, M. R., Antoniazzi, L. B., Bachion, L. C., Harfuch, L., 2009. Impacts on Land Use and GHG Emissions from a Shock on Brazilian Sugarcane Ethanol Exports to the United States using the Brazilian Land Use Model (BLUM). Report to the U.S. EPA regarding the Proposed Changes to the Renewable Fuel Standard Program.

Norton, R. D., Schiefer, G. W., 1980. Agricultural sector programming models: A review. European Review of Agricultural Economics 7(3), 229–265.

Nuñez, H. M., Önal, H., 2016. An economic analysis of transportation fuel policies in brazil: Fuel choice, land use, and environmental impacts. Energy Economics 55, 319–331.

Onal, H., McCarl, B. A., 1991. Exact aggregation in mathematical programming sector models. Canadian Journal of Agricultural Economics 39 (2), 319–334.

PECEGE, 2015. Custos de produção de cana-de-açúcar, http://pecege.dyndns.org/, (Accessed February 2015).

PEMEX, 2014. Pemex anuario estadístico 2013.

Rajagopal, D., Zilberman, D., 2007. Review of environmental, economic and policy aspects of biofuels. Policy Research Working Paper Series (4341).

Rendon-Sagardi, M. A., Sanchez-Ramirez, C., Cortes-Robles, G., Alor-Hernandez, G., Cedillo- Campos, M. G., 2014. Dynamic analysis of feasibility in ethanol supply chain for biofuel production

in México.

Reyes, E. R., Matas, A., 2010. La demanda de gasolinas en México: Efectos y alternativas ante el cambio climático. Economía: teoría y práctica.

Rosillo-Calle, F., Cortez, L. A. B., 1998. Towards PROALCOOL II - a review of the Brazilian bioethanol programme. Biomass and Bioenergy 14, 115–124.

Rowhani, O., Suzuki, A., Thome, K., Zetland, D., 2010. Trade liberalization for brazilian sugar exporters: North or south?.

Russo, C., Green, R., Howitt, R., 2008. Estimation of supply and demand elasticities of California

commodities https://www.cdfa.ca.gov/files/pdf/Demand& SupplyElasticityMajorCACrops.pdf.

Salvo, A., Huse, C., 2011. Is arbitrage tying the price of ethanol to that of gasoline? evidence from the uptake of flexible-fuel technology. The Energy Journal 32, 119–148.

Samuelson, P., 1952. Spatial price equilibrium and linear programming. The American Economic Review 42(3), 283–303.

Sanchez, A., Gomez, D., 2014. Analysis of historical total production costs of cellulosic ethanol and forecasting for the 2020-decade. Fuel 130, 100–104.

Sanchez, A., Magaña, G., Partida, M. I., Sanchez, S., 2016. Bidimensional sustainability analysis of a multi-feed biorefinery design for biofuels co-production from lignocellulosic residues and agro-industrial wastes. Chemical Engineering Research and Design 107, 195–217.

Sanchez, A., Sevilla-Gu ̈itrón, V., Magaña, G., Gutierrez, L., 2013. Parametric analysis of total costs and energy efficiency of 2G enzymatic ethanol production. Fuel 113, 165–179.

SENER, 2018. Sistema de información energética. Secretaria Nacional de Energía. SENER, 2020. PROGRAMA Sectorial de Energía 2020-2024. Secretaría de Energía.

SENER, BID, GTZ, 2006. Potenciales y viabilidad del uso del bioetanol y biodiesel para el transporte en México.

SIAP, 2015. Servicio de Información Agroalimentaria y Pesquera. http://www.siap.gob.mx/aagricolasiap/icultivo/index.jsp, (Accessed Feb 2015).

SisProd, 2015. Sistema Producto, http://www.sagarpa.gob.mx/Paginas/SistemaProducto.aspx, (Accessed February 2015).

Summer, D. A. (Ed.), 2003. Exotic Pests and Diseases. Biology and Economics for BIOSE- CURITY, chapter Exotic Pest and Disease Cases: Examples of Economics and Biology and Policy. Blackwell Publishing Company.

Takayama, T., Judge, G. G., 1964. Equilibrium Among Spatial Separated Markets: A Reformulation. Econometrica 32, 510–524.

Takayama, T., Judge, G. G., 1971. Spatial and temporal price and allocation models. North- Holland Pub. Co.

The World Bank, 2018. World bank open data.

USDA-ERS, 2015. Commodity and Food Elasticities: Demand Elasticities from Literature. Economic Research Service. hhttp://www.ers.usda.gov/, (Accessed jan 2015).

USDA-FAS, 2015. Production, Supply and Distribution Online. PSD. Foreign Agricultural Service. hhttp://www.fas.usda.gov/, (Accessed October 2015).

USDA-NASS, 2016. U.S. and State Data Quick Stats 2.0. Data and Statistics. National Agricultural Statistics Service. http://quickstats.nass.usda.gov/, (Accessed jan 2016).

Valdez-Vazquez, I., Acevedo-Benítez, J. A., Hernández-Santiago, C., 2010. Distribution and potential of bioenergy resources from agricultural activities in mexico. Renewable and Sustainable Energy Reviews 14(7), 2147 – 2153.

Vittetoe, B., 2009. Modeling the US Corn Market During the Ethanol Boom. Under- graduate Economic Review 5(1), http://digitalcommons.iwu.edu/cgi/viewcontent.cgi? article=1044&-context=uer.

Publicado

2022-06-30

Cómo citar

Núñez, H. (2022). Prospectivas del Mercado de Bioetanol en México. EconoQuantum, 19(2), 21–56. https://doi.org/10.18381/eq.v19i2.7258

Número

Sección

Artículos

Métrica