Portfolio Construction Based on Implied Correlation Information and Value at Risk

Autores/as

  • Jesús Rogel - Salazar University of Hertfordshire
  • Roberto Tella Rolls-Royce PLC, Group Finance Treasury

DOI:

https://doi.org/10.18381/eq.v12i1.4856

Palabras clave:

Implied correlation, Value at Risk, VaR, Portfolio construction, Risk

Resumen

Valor en Riesgo (VaR) es una medida usada comúnmente para establecer, dado un nivel de confianza, el peor caso de pérdidas en activos. La correlación implícita obtenida a partir de VaR es una forma alternativa del coeficiente de correlación calculada basándose en rendimiento histórico y en un pronóstico de la peor pérdida. En este trabajo presentamos un tratamiento accesible para estudiantes de economía, finanzas y áreas afines con el objetivo de familiarizar al lector con este estimador de riesgo. Con el uso de tres estudios de caso analizamos el efecto que la correlación implícita apartir de VaR tiene en carteras de tamaño creciente. Calculamos el VaR de cada activo así como la media de correlación  implícita. Dicho valor es usado para ajustar las fracciones del presupuesto en la cartera original. Hacemos un seguimiento comparativo de carteras en un plazo de 50 días para identificar tendencias entre el tipo de cartera y riesgo encontrado.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

Aneja YP, Chandra R, Gunay E (1989). A Portfolio Approach to Estimating the Average Correlation Coefficient for the Constant Correlation Model. The Journal of Finance, Vol. 44, No.5, pp. 1435–1438.

Beder TS (1995). VaR: Seductive but dangerous. Financial Analysts Journal Vol. 51, No. 5, pp. 12-24.

Binder K (2006). Monte-Carlo Methods, in Mathematical Tools for Physicists. Wiley, Weinheim, Germany.

Brummelhuis R, Córdoba A, Quintanilla M, Seco L (2002). Principal Component Value at Risk. Mathematical Finance Vol. 12, No. 1, pp. 23-43

Brigham E, Ehrhardt M (2013). Financial Management: Theory & Practice. Cengage Learning, Canada.

Campbell R, Huisman R, Koedijk K (2001). Optimal Portfolio Selection in a Value-at-Risk framework. Journal of Banking & Finance Vol.25, Is. 9, pp. 1789-1804.

Christoffersen P, Hahn J, Inoue A (2001). Testing and comparing Value-at-Risk measures. Journal of Empirical Finance, Vol. 8, pp. 325-342.

Cotter J, Longin F (2007). Implied Correlation from VaR. Available at SSRN: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=996080.

Datastream International (2012). Thompson Reuters: http://online.thomsonreuters.com/datastream/

Dowd K (2002). An Introduction to Market Risk Measurement. John Wiley and Sons Ltd, Chester, UK.

Duffie D, Pan J (1997). An Overview of Value At Risk. The Journal of Derivatives Vol. 4, No. 3, pp. 7–49.

Elton EJ, Gruber MJ, Brown SJ, Goetzmann WN (2008). Modern Portfolio Theory and Investment Analysis, 8th edn. Wiley, US.

Embrechts, P, McNeil, A, Straumann, D (2002). Correlation and dependence in risk management: properties and pitfalls. Risk management: value at risk and beyond, 176- 223. Cambridge University Press, Cambridge, UK.

Erb CB, Harvey CR, Viskanta, E. (1994). Forecasting international equity correlations. Financial Analysts Journal, Vol. 6, pp. 32-45.

Fabozzi FJ, Gupta F, Markowitz M (2002). The Legacy of Modern Portfolio Theory. The Journal of Investing Vol. 11, No. 3, pp. 7-22.

Holton GA (2003). Value-at-Risk: Theory and practice, Academic Press, California, US.

Hull J, White A (1998). Incorporating volatility updating into the historical simulation method for value-at-risk. Journal of Risk Vol. 1, No. 1, pp. 5-19

Jorion P (2001). Value at Risk, 2nd edn. McGraw-Hill, California, US.

Krauth W (2006). Statistical Mechanics: Algorithms and Computations. Oxford University Press, Oxford, UK.

Linsmeier T, Pearson N (2000). Value at Risk. Financial Analysts Journal Vol. 56, No. 2, pp. 1–21.

Longin F, Solnik, B. (1995). Is the correlation in international equity returns constant: 1960-1990? Journal of International Money and Finance, Vol. 14, pp. 3-26.

Markowitz H (1952). Portfolio Selection. The Journal of Finance Vol. 7, No. 1, pp. 77–91.

Miranda MJm Fackler PL (2002). Applied Computational Economics and Finance. MIT Press, US.

Ning H (2007). Hierarchical Portfolio Management: Theory and Applications. PhD Thesis Erasmus School of Economics, Erasmus University Rotterdam, Netherlands.

Rees DG (2001). Essential Statistics, 4th edn. Chapman & Hall, Florida, US.

Sharpe WF (1963). A Simplified Model for Portfolio Analysis. Management Science Vol. 9, pp. 277–293.

Strong R (2008). Portfolio Construction, Management, and Protection, 5th, edn. Cengage Learing, Canada.

Von Furstenberg GM, Jeon BM (1989). International stock price movements: links and messages. Brookings Papers on Economic Activity Vol. 1, 125-180.

Descargas

Publicado

2016-01-16

Cómo citar

Rogel - Salazar, J., & Tella, R. (2016). Portfolio Construction Based on Implied Correlation Information and Value at Risk. EconoQuantum, 12(1), 125–144. https://doi.org/10.18381/eq.v12i1.4856

Métrica

Artículos similares

También puede {advancedSearchLink} para este artículo.