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Abstract
Objective: the Ricardian model, in which market land values 
are modeled as a function of climate, has been estimated 
extensively in the context of developing countries where its 
core assumptions are likely to fail due to missing or incom-
plete markets. This article proposes a new measure of land 
valuation that better reflects agricultural productivity in such 
contexts: the Productive Value of Agricultural Land (PVAL).
Methodology: a three-step empirical strategy is applied to 
data from a survey of Mexican rural households. The first 
step is the estimation of an agricultural production function. 
In the second step, parameter estimates are used to calculate 
PVAL. In the third step, PVAL is used as the dependent varia-
ble in a Ricardian regression.
Results: suggests that PVAL increases with more precipita-
tion and decreases with by extreme heat. When the Ricardian 
regression is estimated using market land values, the positive 
effect of precipitation is underestimated and the effect of ex-
treme heat on land productivity is null.
Limitations: omitted variables bias could still influence the 
Ricardian estimates obtained using PVAL.
Originality: a novel version of the Ricardian model is esti-
mated, one that does not rely on market values of land.
Conclusions: failing to account for the market setting of agri-
cultural producers, particularly in developing countries, may 
lead to an underestimation of the effects of climate change in 
agricultural productivity.
Key Words: climate change, adaptation, agriculture, Ri-
cardian model.
jel Classification: Q15, Q24, Q54, Q56.

Resumen
Objetivo: el modelo Ricardiano, en el cual el valor de mercado 
de la tierra se modela como una función del clima, ha sido es-
timado extensivamente en el contexto de países en desarrollo 
en donde sus supuestos clave podrían no sostenerse debido a 
mercados ausentes o incompletos. Este artículo propone una 
nueva medida de valuación de la tierra que refleja mejor la 
productividad agrícola en tales contextos: el Valor Productivo 
de la Tierra Agrícola (VPTA).
Metodología: una estrategia empírica de tres pasos se aplica 
a datos de una encuesta a hogares rurales en México. En el 
primer paso se estima una función de producción agrícola. 
En el segundo paso, los parámetros estimados se utilizan 
para calcular el VPTA. En el tercer paso, el VPTA se utiliza 
como variable dependiente en una regresión Ricardiana.
Resultados: sugieren que el VPTA aumenta con la precipita-
ción y disminuye con el calor extremo. Cuando la regresión 
Ricardiana se estima utilizando valores de mercado de la 
tierra, el efecto positivo de la precipitación se subestima y el 
efecto del calor extremo en la productividad agrícola es nulo.
Limitaciones: el sesgo por variables omitidas aún podría 
influenciar las estimaciones Ricardianas obtenidas con el 
VPTA.
Originalidad: se estima una nueva versión del modelo Ricar-
diano que no se basa en valores de mercado de la tierra.
Conclusiones: el no tomar en cuenta el contexto de mercado 
de los productores agrícolas, particularmente en países en 
desarrollo, podría derivar en una subestimación del efecto 
del cambio climático en la productividad agrícola.
Palabras clave: cambio climático, adaptación, agricultura, 
modelo Ricardiano.
Clasificación jel: Q15, Q24, Q54, Q56.

                                        Jesús Arellano-González*
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Introduction
Climate change may increase global temperatures 
by as much as 2.7oC by 2100 under an intermedia-
te scenario of GHG emissions (IPCC, 2023). Such 
an increase might have important productivity 
consequences in agricultural systems around the 
world. The agriculture of developing countries is 
expected to be the most affected due to the alre-
ady warm temperatures in which they produce 
and their low capacity to adapt (Mendelsohn and 
Massetti, 2017; Lybbert and Sumner, 2012). Yet, 
the empirical evidence available is likely to unde-
restimate the negative effects of climate change 
in developing countries because current models 
overstate their potential for adaptation (Hertel 
and Lobell, 2014).

One such model is the Ricardian approach 
(Mendelsohn et al., 1994), which exploits 
cross-sectional variation of land values and cli-
mate to approximate the welfare consequences 
of climate change. Under certain assumptions, 
the Ricardian model is said to account for the 
adaptation of farmers in the long run. When the 
market for land is perfectly competitive and far-
mers maximize profits unconstrainedly, market 
land values reflect the productivity of land and 
the capacity of farmers to adapt in the long run. 
However, such a setting is rarely seen in the de-
veloping world where access to credit is typica-
lly heterogeneous with a big proportion of small, 
poor farmers facing credit constraints (Eswaran 
and Kotwal, 1986; Carter, 1988). Isolation (Taylor 
and Adelman, 2003), uncertainty in land tenure 
(Feder and Nishio 1998) and violent conflicts 
(Ibáñez and Querubin, 2004; CMDPHD, 2018) mi-
ght also prevent well-functioning land markets. In 
these settings, the market valuation of land typi-
cally used in Ricardian studies, is not the appro-
priate measure to quantify the effects of climate 
change on agriculture as it might overestimate 
their ability to adapt.

The possibility of omitted variable bias has 
also undermined the reliability of the Ricardian 

results (Deschenes and Greenstone, 2007; Or-
tiz-Bobea, 2020). Market land values can be in-
fluenced by unobserved on-farm characteristics 
and off-farm pressures to convert agricultural 
land to new uses such as urbanization and hou-
sing, confounding the true relationship between 
climate and agricultural productivity. While re-
cent studies have tried to solve this identification 
issue in the context of the US or other develo-
ped countries (Severen et al., 2018; Ortiz-Bobea, 
2020; Bareille and Shakir, 2023), little attention 
has been paid to the plausibility of the core as-
sumptions of the Ricardian approach in develo-
ping countries and the implications they might 
have on the climate change welfare effects deri-
ved from it.

In this paper, I implement a novel version of 
the Ricardian approach that relies on a shadow 
measure of land valuation that I call the Produc-
tive Value of Agricultural Land (PVAL). PVAL is 
structurally uncovered from the estimation of an 
agricultural production function and, as a result it 
only reflects farm productivity, reducing concerns 
about omitted variable bias. Its estimation is de-
rived from the first order condition in the profit 
maximization program of a household. As a re-
sult, it also internalizes the shadow components 
of land valuation associated with the markets of 
land and credit reflecting more properly the mar-
ket setting in which farmers make decisions.

The empirical application of this paper focu-
ses on the case of Mexico, a country in which the 
level of competitiveness so far achieved in agri-
cultural land markets is unclear and where access 
to credit is limited. In 1992, Mexico initiated a 
land reform that sought to strengthen the indi-
vidual property rights of agricultural producers 
through a process of certification. Before 1992, 
land was held under ejido ownership, a type of 
collective property in which individual farmers 
were not allowed to sell, rent, or collateralize 
their plots. The land reform ended these restric-
tions and created a legal mechanism to convert 
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ejido land to full private property (de Janvry et al., 
2014; de Janvry et al., 2015). As of 2023, 96.0% 
of ejido agricultural land has been certified with 
only 6.0% transitioning to private property (RAN, 
2023). In addition, land rental markets are not 
very active with only 6.3% of total agricultural 
land being rented (INEGI, 2022). As for credit 
markets, in 2019, 9.4% of the farms apply for a 
loan while only 8.4% secured it (INEGI, 2019).

This paper relies on a three-step empirical 
strategy applied to household data from Mexico’s 
National Rural Household Survey (ENHRUM). The 
first step is the estimation of an agricultural pro-
duction function. In the second step, the estima-
ted input elasticities are used to calculate PVAL 
using the first order condition of the profit maxi-
mization problem of the farmer. In the third step, 
I use PVAL as the dependent variable in a new 
version of the Ricardian model. Results are com-
pared with a Ricardian estimation that relies on 
self-reported market land values instead. In these 
regressions, the non-linear effect of temperature 
on land productivity is captured by transforming 
temperature into growing degree days (GDD) and 
harmful degree days (HDD).

There are four main findings. First, estimates 
of PVAL are on average, 33.0% larger than self-re-
ported land values. Market land values underes-
timate land productivity in all regions of Mexico 
except the Center, where urbanization pressures 
are high. Second, when estimating a Ricardian re-
gression using PVAL as the dependent variable, it 
is found that extreme heat is detrimental for land 
productivity, i.e. an additional HDD reduces PVAL 
by 1.5%, on average. Results also reveal a conca-
ve and robust relationship between precipitation 
and land productivity with precipitation increa-
ses being beneficial, i.e. a 1mm increase in pre-
cipitation increases PVAL by 0.15%. When mar-
ket land values are used instead, results show no 
significant effects of harmful temperatures and 
a smaller increase in market valuation resulting 
from precipitation increases (a 1mm increase 

in precipitation increases market land values by 
only 0.07%). Thirdly, access to formal credit sig-
nificantly increases land productivity only when 
PVAL is used. Market land values do not seem to 
internalize the shadow component of agricultu-
ral productivity associated with the credit cons-
traints faced by farmers. Fourth, PVAL does not 
seem to be affected by the urbanization and hou-
sing pressures affecting market land values which 
increase the closer the farm is to a city.

In Mexico, under a medium GHG emissions 
scenario, annual mean temperature is expected 
to increase by 1.5oC by midcentury. This increa-
se might be accompanied with an increase in the 
number of high heat days (those with maximum 
temperature>35oC) to above 20 days per month 
during summer. At the same time, annual total 
precipitation is expected to decrease by 3.4% 
(TWBG, 2023). The Ricardian estimates of this 
paper suggest that the negative effect that extre-
me heat may have on future agricultural produc-
tivity may not be captured when market land va-
lues are used. Similarly, the negative effect of less 
precipitation in future agricultural productivity 
would be underestimated if marked land values 
are used. This result is explained by the fact that 
PVAL and market land values capitalize climate 
in different ways. PVAL reflects agricultural pro-
ductivity and internalizes the market setting fa-
ced by agricultural producers. Market land values 
do not. When making projections of the potential 
effect that climate change may have on agricultu-
ral productivity it is important to do it using esti-
mates that correctly reflect land productivity in a 
context of constrained production, otherwise, the 
conclusions and the policy recommendations de-
rived may be misleading.

The organization of this paper is as follows. 
The first section provides a review of the existing 
approaches and some thoughts on the suitability 
of their application in the context of developing 
countries. In the second section, I use a profit 
maximization setting to show the implications of 
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the Ricardian analysis when the assumptions of 
competitive and complete markets for land and 
capital do not hold. In the third section, I lay out 
the empirical strategy to estimate PVAL and the 
agricultural data used. In the fourth section, I esti-
mate a version of the Ricardian equation that uti-
lizes PVAL as the dependent variable and present 
the results and their robustness. The final section 
provides some conclusions and implications for 
existing and future work relying on the Ricardian 
approach.

Existing approaches
In the Ricardian model, farmers are assumed to 
maximize profits in a context of complete and 
perfectly competitive markets. With perfect com-
petition in land markets, the market rental price 
of one unit of land, v, will be set equal to the pro-
fit r*  that such unit of land will generate (Men-
delsohn et al., 1993). Land values then reflect the 
present value of future land rents or, equivalently, 
future farm profits. If the interest rate on capital 
is the same for all farmers, then:

                 (1)

where t  stands for time and r is the market 
interest rate. By relying on cross-sectional varia-
tion of farm prices, the Ricardian approach ac-
counts for all the possible forms of adaptations 
that a profit maximizing farmer would undertake 
in response to climate change. Given climate, far-
mers will choose the crop or activity that gene-
rates the highest value of r* . Farmers will then 
optimize input usage within the chosen activity. 
Consequently, the Ricardian approach relies on 
land values to draw conclusions about how exo-
genous changes in climate affect farm productivi-
ty. Typically, this relationship is estimated using 
an equation of the form:
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where Wr  represents climate normals 
(three-decade averages of climatological varia-
bles, generally, temperature and precipitation) at 
every location c (i.e., counties). Wr  is generally es-
timated from historical meteorological records of 
temperatures and precipitation for relevant time 
windows usually associated to growing periods. 
A set of other relevant determinants of land va-
lues, X , is also included. Welfare impacts from 
different climate change scenarios can then be 
inferred from the parameter estimates obtained 
in Equation 2.

The Ricardian model proposed in the mid 
1990’s has been applied extensively. In the US, a 
first application was provided by Mendelsohn et 
al. (1994) with subsequent developments aiming 
to improve upon this seminal work (Schlenker 
et al., 2005; Schlenker et al., 2006). Econometri-
cally, the cross-sectional nature of the Ricardian 
approach is its greatest disadvantage. If there 
exist unobserved factors correlated with climate 
and land valuation, then, the Ricardian estimates 
will be affected by omitted variable bias (Mendel-
sohn and Massetti, 2017). Such unobserved fac-
tors could be soil quality, a farmer’s idiosyncratic 
ability and nonfarm influences such as the option 
value to convert land to a new use (as with ur-
banization). To reduce the threat of omitted va-
riables, the usual strategy has been the inclusion 
of a large set of plot or household characteristics. 
However, some studies have found that even after 
controlling for such characteristics, the Ricardian 
estimates are not stable over time and that such 
instability is likely due to factors affecting land 
valuation that remain omitted (Deschênes and 
Greenstone, 2007; Ortiz-Bobea, 2020). 

The panel data approach (Deschênes and 
Greenstone, 2007), solves the identification is-
sues of the Ricardian approach by regressing 
agricultural outcomes on weather and individual 
fixed effects. However, by relying on weather, the 
panel data approach estimates something that 
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is different from the long run effect of climate. 
Specifically, short run adaptations to fluctuations 
in weather can differ from long run adaptations 
to climate change (Fisher et al., 2009; Fisher et 
al., 2012; Deschênes and Greenstone, 2012; Au-
ffhammer, 2022). In spite of this potential short-
coming, the panel approach has attracted signifi-
cant attention. Some of the empirical applications 
relying on panel data include Burke and Emerick 
(2016), Schlenker and Roberts (2009) and Or-
tiz-Bobea and Just (2013) for the US, Welch et al. 
(2010) for Asia, Gammans et al. (2017) for France 
and Moore and Lobell (2014) for Europe, Guite-
ras (2009) for India and Lobell et al. (2011) for 
a global analysis. The application of the panel 
data approach in developing countries has been 
more limited mainly because long panel data sets 
on agricultural outcomes at a sufficiently disag-
gregated scale are often not available (Burke et 
al., 2016). In such contexts, cross-sectional data 
is more likely to be available. Not surprisingly, 
the implementation of the Ricardian approach 
in developing countries has been prolific. Some 
countries and regions for which Ricardian esti-
mates exist are Mexico (Mendelsohn et al., 2010; 
Galindo et al., 2015), Sri Lanka (Seo at al. 2005), 
Brazil and India (Sanghi and Mendelsohn, 2008), 
Latin America (Seo and Mendelsohn, 2008a and 
2008b), Africa (Kurukulasuriya and Mendelsohn, 
2008) and Asia (Mendelshon, 2014).

Efforts to address the omitted variables bias 
critique to the Ricardian approach are still on-
going. In the context of the US, Ortiz-Bobea (2020) 
estimates a Ricardian equation using agricultural 
land rents as the dependent variable. According 
to the author, this strategy circumvents the effect 
of nonfarm influences because land rents better 
reflect agricultural productivity and do not ca-
pitalize the opportunity costs of alternative land 
uses. When comparing his results with a traditio-
nal Ricardian equation that relies on market land 
values, the author concludes that the estimated 
effect of climate change in US agriculture is actua-

lly not distinguishable from zero which is in sha-
rp contrast with the large negative effects found 
with Ricardian models that use market land va-
lues. In a more recent contribution, Bareille and 
Chakir (2023) estimate a version of the Ricardian 
approach based on repeated land sales data from 
France in which plot fixed effects are included in 
the regression while climate is allowed to vary 
between sales. The authors argue that the inclu-
sion of plot fixed effects is the only way to remove 
the bias associated with omitted factors affecting 
land valuation. This analysis combines the advan-
tages of both, the cross-sectional approach, by 
still using land values and climate, and the panel 
approach, by controlling for confounding omitted 
variables with plot fixed effects. Their results su-
ggest higher positive impacts of climate change in 
French agriculture compared to traditional Ricar-
dian estimates. Yet, both of these applications are 
focused on two developed countries, the USA and 
France, where the assumptions of perfectly com-
petitive markets for land are likely to hold. These 
contributions, however, pay no attention to the 
plausibility of such assumptions in the context of 
developing countries.  In addition, both studies 
rely on decades-long data on land values or land 
transactions, which is hard to get in the develo-
ping world.   

Market land values will reflect the true valua-
tion of land only when the markets for land and 
credit are well-functioning. Perfect competition 
in the land market will make profits equate the 
rental value of land. A complete market for capital 
allows farmers to access any amount of working 
capital that they require in order to initiate and 
continue the production process. This, however, 
is not the case in many developing countries. Em-
pirical evidence shows that land titling increases 
land values and farm investments (Feder and Ni-
shio 1998). Uncertainty in land tenure introduces 
a component of risk to future farm profits not li-
kely to be captured by market land values. Violent 
conflicts and forced displacements make it im-
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possible for a farmer to have certainty about land 
tenure and the value of land holdings (Ibáñez and 
Querubin, 2004; CMDPHD, 2018). Isolated villa-
ges poorly integrated with regional or national 
markets might not fit the assumption of perfect-
ly competitive input markets if local markets for 
some inputs, including land, do not exist (Taylor 
and Adelman, 2003).

Agrarian economies in developing countries 
typically have limited access to credit due to the 
inability of farmers to provide collateral. Often, 
the amount of land that farmers own represents 
their most valuable possession. Whenever access 
to credit is associated to land holdings, small far-
mers might remain constrained or not have ac-
cess to capital at all (Eswaran and Kotwal, 1986; 
Carter, 1988). Because of heterogeneous access to 
capital, farmers are unlikely to bear the costs of 
adaptation to climate change homogenously. Cre-
dit constraints preventing adaptation might have 
important consequences on who is able or not 
to adapt. In the context of incomplete or missing 
markets, market land values might not reflect the 
true productive value of agricultural land and the 
true ability of farmers to adapt, an issue explored 
in detail with the theoretical model presented in 
the next section.

Land valuation in the context of missing 
and incomplete markets
To illustrate the fact that market land values do 
not reflect land productivity in the presence of 
credit and land constraints, consider a house-
hold ( i ) that engages in agricultural production 
using land ( Ti ), labor ( Li ), and intermediate 
inputs ( Ii ) (i.e. fertilizers, pesticides). Agricul-
tural output is given by , , ;Q T L I Ai i i^ hwhich is 
assumed to be increasing, twice continuously 
differentiable and quasi-concave. A is a produc-
tivity parameter. Output and inputs are all tra-
ded using market prices. The household is also 
endowed with an amount of land Tir .

When renting land, hiring labor and purchasing 

intermediate inputs, the household is subject to a 
working capital constraint Bi  that is equal to the 
amount of credit for which it is eligible based on 
the amount of collateral that it can offer.1 For sim-
plicity, let us abstract away from the potential en-
dogeneity of access to credit and assume that the 
credit amount Bi  is exogenously determined.2

The household seeks to maximize profits from 
agriculture by solving the following problem3:

, , ;p Q T L I A T T

p L p I rB

, ,
max

T L I Q i i i i i

L i I i i

i i i y- -

- - -

^ ]h g    
                                                              (3)
s.t.

T T p L p I Bi i L i I i i#y - + +] g
where pQ , v , pL  and pI  are the market prices of 
output, land, labor and intermediate inputs res-
pectively. The household repays the loan at the in-
terest rate r. When v T Ti i- r^ h  is positive, the hou-
sehold rents land in and this expenditure tightens 
the credit constraint as it uses liquidity. Conver-
sely, when v T Ti i- r^ h  is negative, the household 
rents land out and the cash generated relaxes the 
constraint as it creates liquidity (Sadoulet and de 
Janvry, 1995). Let im  be the Lagrange multiplier 
associated with the credit constraint. The First 
Order Condition (FOC) with respect to Ti  is given 

¹ In less-developed agrarian economies, land holdings are 
typically the most valuable asset in a household’s portfolio. 
Thus, access to credit in such economies is heavily determi-
ned by a household’s ability to collateralize its land and by 
the size of its land endowment (Carter, 1994; Eswaran and 
Kotwal, 1986). If access to credit is linked to the size of land 
holdings, then Bi  would be an increasing function of Tir  and 
as long as land endowments are heterogeneous across hou-
seholds, access to credit will also be heterogeneous.

² Results are qualitatively similar if we explicitly model Bi  as 
a function of Tir .

³ The theoretical results of this section are qualitatively si-
milar if households are modeled as consumers. Assume for 
example, that households derive utility from the consump-
tion of market goods, self-produced agricultural goods and 
leisure. Assume also that the market for labor is perfectly 
competitive and that credit constraints still exist. In this 
setting, households would maximize utility subject to an 
income constraint equal to the sum of agricultural profits 
and any other exogenous income given to the household. In 
this case, the first order condition with respect to land will 
still have a shadow component associated with the shadow 
price of credit and the marginal utility of income.
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by:

                        p T
Q

1Q
i

i2
2

y m= +] g          (4)

The price used by the household to optimally 
determine land use is a shadow rental price that 
is household specific and a function of the shadow 
price of credit, im , and the market rental value of 
land v . As a result, in the presence of credit cons-
traints the market rental value of land does not 
entirely reflect its full opportunity cost. Equation 
4 clearly differs from the Ricardian result. Whe-
never credit constraints are present, the shadow 
rental value of land will differ from the market 
rental price. The Ricardian assumption stated in 
Equation 1 will result from profit maximization 
only when the credit constraint is not binding (i.e. 

0im = ).
When the market for land is missing, the hou-

sehold cannot rent land in or out, v  is equal to 
zero and the household cannot devote an amount 
of land larger than its land endowment to agri-
cultural production. The profit maximization pro-
gram becomes:

                 
, , ;p Q T L I A p L p I rB, ,

max
T L I Q i i i L i I i ii i i - - -^ h

(5)
s.t.

p L p I BL i I i i#+
T Ti i#

Let in  be the Lagrange multiplier associated 
with the land constraint. When the market for 
land is missing the shadow rental value of land 
is given by:

                 (6)

In turn, the shadow rental price of land is hou-
sehold specific and the opportunity cost of land 
is given by a shadow measure only known to the 
farmer.

Equation 4 and Equation 6 illustrate that in 
the presence of credits constraints and/or when 
the market for land is missing, the marginal va-

p T
Q

Q
i

i2
2

n=

lue of an additional unit of land is not necessa-
rily equal to an exogenous price determined in 
a competitive market. Depending on the market 
setting, this value could be a combination of mar-
ket and shadow valuations. When the market for 
land exists and no credit constraints affect the de-
cision making of the farmer, then, the market va-
lue of land, ,v  tells us all we need to know about 
its productivity. However, if credit constraints are 
present, the marginal value of an additional unit 
of land is higher due to the increased productivi-
ty caused by accessing an additional unit of cre-
dit. This is the shadow price of credit im , and the 
market rental price of land fails to internalize it. 
Finally, if a market for land does not exist, far-
mland productivity is endogenously determined 
and given by the shadow price of land, in .

Market measures of land productivity might 
lead to erroneous conclusions as they might 
omit other important determinants of land pro-
ductivity, particularly in developing countries 
where farmers are expected to face different 
types of constraints. To investigate the effects 
of climate change on long-run farm productivity 
one must use a measure that genuinely reflects 
it, free of other non-agricultural confounders 
affecting its market valuation and inclusive of 
the market setting directly affecting agricultu-
ral productivity. If access to credit boosts pro-
ductivity, then the shadow price of credit im  
should be part of its productive value. In the 
absence of a competitive market for land, the 
shadow rental price of land in  should be inter-
preted as its productive value. Such a measure 
is what I have defined as PVAL. Although not 
directly observed, PVAL can be inferred from 
the left-hand side of Equation 4 or Equation 6. 
The next section outlines the empirical strategy 
to estimate it and the results obtained.

PVAL estimation
Empirical strategy
The first step of the empirical strategy of this 
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paper is to estimate PVAL. The shadow rental 
price of land given by the right-hand side of 
Equation 4, and Equation 6 is not observed as 
the idiosyncratic component of land valuation 
is only known to the farmer. However, regard-
less of the market setting faced by the farmer, 
the left-hand side of the FOC is always the same. 
The marginal value of an additional unit of land 
should always equate the shadow rental price 
of land and it is possible to approximate it by 
estimating an agricultural production function. 
I assume a Cobb-Douglas production function 
of the form:
                      G A T L Iit it it it it

1 2 3= b b b              (7)
where Git  represents gross output value of hou-
sehold i  at time t . As before, Tit , Lit  and Iit  
represent land, labor and intermediate inputs. 
Taking natural logs of Equation 7 results in the 
familiar linear production function:

                
ln ln ln lnG T L I qit it it it it t it0 1 2 3b b b b h f= + + + + + +

(8)
where the productivity parameter Ait  has been 
decomposed in b0 , the mean efficiency level com-
mon to all households, qit , a productivity parame-
ter that represents unobserved household-speci-
fic characteristics such as the managerial ability 
of the farmer and, th , a productivity shock com-
mon to all households within a time period t . itf , 
is an i.i.d. error component composed of unexpec-
ted shocks to agricultural productivity.
The correlation between input levels and unob-
served productivity factors generates an endoge-
neity issue. Inputs levels in agricultural produc-
tion are not independently chosen but are rather 
determined by the characteristics of the firm 
including the unobserved factor qit . Panel esti-
mates of Equation 8 would generate unbiased 
estimates of the structural parameters of the 
production function if we are willing to assume 
that qit  is time-invariant. Recent theoretical de-
velopments have moved away from such an as-

sumption and treat the idiosyncratic unobserved 
productivity as time-variant. Of particular rele-
vance for this empirical application are the works 
of Olley and Pakes (OP, 1996) and Levinson and 
Petrin (LP, 2003). OP use the firm’s investment 
decisions to proxy for unobserved productivity 
shocks. LP favors the use of intermediate inputs 
as proxies arguing that in some settings the pro-
portion of observations with zero investment is 
high enough to cast doubts on the validity of the 
assumptions made by OP. This is particularly true 
for the case of agriculture where investment de-
cisions are not observed on a frequent basis. The 
preferred results of this empirical application are 
derived using LP. For comparison purposes, esti-
mates using standard OLS and panel techniques 
are also provided.4

Having estimated the structural parameters of 
the production function, PVAL is recovered from 
the capitalization of the shadow rental value of 
land. Equation 4 and Equation 6 state that re-
gardless of the market setting, the shadow rental 
value of land will always equate to the marginal 
value of land given by the left-hand side of the 
equations. Taking the first derivative of Equation 
7 with respect to T  and using r  to capitalize it 
we have:

                      (9)
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⁴ The interested reader could refer to Van Beveren (2012) 
for a comprehensive survey of this and other available 
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to the market valuation of land, PVAL is the hou-
sehold’s reservation price of land that internali-
zes the market settings faced by the farmers. It 
is also uncovered from the structural estimation 
of a functional form that synthetizes the way in 
which agricultural inputs are transformed in agri-
cultural output thus reflecting only agricultural 
productivity.

Data
ENHRUM is a nationally representative panel of 
Mexican households located in 80 villages with 
fewer than 2,500 inhabitants and across 14 sta-
tes. It provides information for the 2002 and 
2007 cropping seasons and a complete characte-
rization of the agricultural activities of rural hou-
seholds including total output value and input 
use and detailed information on socio-demogra-
phics, plot characteristics (size, ownership regi-
me, self-reported market land values, access to 
irrigation, etc.) and access to credit (formal and 
informal).

Table 1 reports the summary statistics of the 
variables used to fit the agricultural production 
function. The sample is composed of 720 agricul-
tural households, 182 present in the 2002 round, 
154 present in the 2007 round and 384 present 
in both rounds of the survey. The pooled sample 
is composed of 1,104 observations. Agricultural 
variables in this table represent the aggregated 
values of every crop grown by the household.6  
For example, in 2002, the average output value 
per hectare (ha) of $9,540.8 includes the mar-
ket value of all crops grown by the household 

(staples, non-staples, annuals, perennials) in the 
Spring-Summer and Fall-Winter cropping sea-
sons. Double cropping has been mentioned in the 
literature as a potential way of adaptation to cli-
mate change (Seifert and Lobell, 2015). Thus, it 
is important to account for it when valuing land 
productivity. Between 2002 and 2007, average 
output value per hectare increased by 18%.

Average land in production amounts to 4.6 has 
on average. Total labor is defined as the sum of 
family and hired labor from the beginning of the 
production process before planting and up to har-
vest, and the pooled sample reflects an average of 
65.2 days of total labor per ha. We observe an in-
crease of 23% in total labor usage from 2002 to 
2007. The cost of intermediate inputs is defined 
as the sum of seed, fertilizer, manure and pestici-
de purchases. It also includes the rent of agricul-
tural machinery (i.e. tractors, harvesters, yuntas, 
etc).7 On average, households spent $4,984.5 per 
ha on the purchase of intermediate inputs. Fina-
lly, average agricultural value added (output value 
minus the cost of intermediate inputs) is equal to 
$4,556.3 per ha and between 2002 and 2007 it in-
creased by 50%.

Results
Table 2 reports the parameter estimates of 
the agricultural production function. OLS, fixed 
effects and LP estimates of Equation 8 are pre-
sented in columns (1), (2) and (3) respectively. In 
OLS and fixed effect, standard errors are cluste-
red at the household level. In LP standard errors 
are derived using 50 bootstrap replications. In all 
three specifications, it is found that increases in 

However, in many settings, the true distribution of the error 
term is unknown. Duan’s (1983) general result suggests 
that in such cases, the smearing correction factor can be 
estimated with the mean exponentiated residual from 

the model.

⁶ Production for self-consumption was valued using average 
market prices calculated at the village level. When market 
prices for a particular crop were not found at the village le-
vel, average market prices were calculated at the state, re-
gion and national levels, in that order.

⁷ The 2002 round of the survey recorded the total machi-
nery-hours used in the production process. Unfortunately, 
this is not the case in the 2007 round, which only recorded 
machinery rent expenditures. Ideally, one would treat this 
form of capital as an additional factor of production in the 
estimation of an agricultural production function. The 
unavailability of a physical measure of machinery in both 
rounds and the high frequency of zero expenditures in the 
sample makes it necessary to treat machinery expenditures 
as an intermediate input.
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labor and land lead to increases in agricultural va-
lue, i.e. all estimated elasticities are positive and 
statistically significant at the 5% level. Failing to 
control for unobserved idiosyncratic productivity 
leads to an overestimation of the magnitude and 
significance of the elasticity of intermediate inputs, 
i.e. the OLS estimate is larger compared to the fixed 
effects and LP estimates. This result indicates that, 
while all three inputs are potentially correlated with 
qit , the correlation between intermediate input usa-
ge and qit  is likely to be the highest.8 In the event of 
unexpected productivity shocks, farmers have more 
flexibility to adjust the use of intermediate inputs 
compared to land or labor which may have been 
already committed in the production process. Thus, 
the omission of qit  artificially inflates the parameter 
estimate of intermediate inputs. In fact, according to 
the LP estimates (column (3)), the estimated elas-
ticity of intermediate inputs is not statistically sig-
nificant. Finally, the LP estimates indicate that the 
hypothesis of constant returns to scale cannot be 
rejected.

PVAL estimates are obtained from substitu-
ting the parameter estimates of column (3) of Ta-
ble 2 into Equation 9. The interest rate used for 
the capitalization of PVAL is 4.61% which corres-
ponds to the return of a Mexican treasury bond 
on June, 2012 (Banxico, 2023). PVAL and self-re-
ported land values are both available for only 727 
observations. Table 3 reports summary statistics 
and the paired t-test for the difference of these 
two measures. In the pooled sample, the avera-
ge PVAL per hectare is $100,202.8. This value is 
33% higher than the mean self-reported land va-
lue of $75,597.3 and the difference is statistically 
significant. On average, PVAL estimates are signi-
ficantly larger than self-reported land values in 
the southern and northern regions. For example, 
the Northwest displays an average PVAL estimate 

that is 245.0% higher than the average self-repor-
ted land value. Between 2002 and 2007, average 
self-reported land values increased by 54% while 
average PVAL increased by only 10%. This result 
indicates that the rapid increase in self-reported 
land values is possibly associated to off-farm fac-
tors not related to agricultural productivity.

The overall correlation between observed land 
valuation and the PVAL estimates is only 0.173. 
Thus, there is little agreement between what hou-
seholds report as market land values and the ac-
tual productive value of their plots. Self-reported 
land values could be affected by measurement 
error but its magnitude is unknown since there 
is not an official source of market land values that 
could be used as comparison. Alternatively, hou-
seholds might report an estimation of the mar-
ket value of their land but not its shadow com-
ponents. As detailed before, in the presence of 
credit constraints, there is an additional compo-
nent in a household’s reservation price for land, 
the shadow price of credit. If this is true, then 
Table 3 provides evidence that such credit cons-
traints are present and economically important, 
particularly at the regional level. Other empirical 
findings have also highlighted the economic im-
portance of shadow prices to explain agricultural 
labor supply responses (Skoufias, 1995) and crop 
valuation (Arslan and Taylor, 2009).

Ricardian estimation
Empirical strategy
The final step of the empirical application of this 
paper is the estimation of a version of the Ricar-
dian equation that has PVAL as the dependent va-
riable. To estimate the effect of climate change on 
land productivity, I use the pooled sample of PVAL 
estimates (1,104 obs) to estimate the following 
specification:
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⁸ This hypothesis is corroborated when looking at the actual 
correlations of the input variables and the estimated q itt
from column (3). Such correlations are 0.027, 0.047 and 
0.185 for land, labor and intermediate inputs, respectively.
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where the natural logarithm of PVAL of hou-
sehold i  in village v  at time t  is expressed as 
a function of the following climate variables at 
the village level: Growing Degree Days (GDD), 
Harmful Degree Days (HDD), precipitation (P ) 
and precipitation squared (P2). Svt  is a vector of 
soil types at the village level and Xit  is a vector 
of household characteristics. Regional ( rx ) and 
time (ht ) fixed effects are also included to con-
trol for unobserved time-invariant determinants 
of land productivity common to all households 
within the same region and during the same year. 
Versions of Equation 10 with region-by-year 
fixed effects are also estimated to control for the 
possibility that such unobserved determinants 
are time-varying.

As long as there is correlation between climate 
and other unobserved determinants of agricultu-
ral productivity not included in the regression, 
the Ricardian estimation could still be biased. 
However, PVAL only reflects land productivity 
which greatly reduces concerns about omitted 
factors polluting land market valuation. Also, 
PVAL internalizes the market setting in which 
farmers make decisions and is thus a better re-
presentation of land valuation in places where 
markets are less likely to function perfectly. For 
comparison purposes, Equation 10 is also esti-
mated using self-reported land values.

Data
Household data
Table 4 reports summary statistics on the hou-
sehold characteristics included in the estimation 
of Equation 10. There is not much evidence of 
competitive and complete markets for land and 
credit. Only 30% of households have predomi-
nantly private ownership over their plots9 with 
the rest still being under the ejido figure. Only 
10% of the households participate in land ren-
tal markets while an additional 14% engage in 

informal mechanisms such as borrowing and 
crop-sharing. Only 8% of households had access 
to formal credit while an additional 19% had cre-
dit from informal sources. Finally, only 27% of 
the households use irrigation. The table also in-
dicates that rural households in the sample rely 
heavily on government transfers (from PROCAM-
PO and PROGRESA) and that household heads in 
rural Mexico have low levels of education.

Climate and soil data
Daily weather data for 5,422 weather stations 
were obtained from the meteorological service 
repository CLICOM10 which provides informa-
tion on daily precipitation, maximum and mini-
mum temperatures that date as far back as 1920. 
Entry and exit are observed for many weather 
stations, and as a result, daily weather data are 
missing for the dates in which a station did not 
exist or did not operate. Missing data are a com-
mon issue when using information from weather 
stations and could introduce a bias in parameter 
estimates (Auffhammer et al., 2013). To minimi-
ze the potential effects of missing data, I restrict 
the sample of eligible weather stations to those 
with at least 75% of daily information for the pe-
riod of 1972 to 2007. This period is long enough 
to cover 30 years before each round of ENHRUM. 
After this exclusion, I am left with information 
from 1,713 stations for precipitation and 1,510 
stations for temperature. This procedure keeps 
the set of stations used to calculate each climate 
variable constant ensuring that its resulting va-
riation is not caused by changes in station cove-
rage (Auffhammer et al., 2013).
I define weather ,w in village v  at time t  as the 
weighted average of weather in the 5 nearest 
weather stations:
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⁹ At least 50% of all of the household’s plots have these cha-
racteristics.

10 Weather station data retrieved from http://clicom-mex.ci-
cese.mx/.
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with 
d

1
n

n
a = , where dn  stands for distance 

of weather station n  to each village v .  Weights 
are normalized so that their sum over all stations 
in a village sum to 1. On average, the 5 closest 
weather stations used to interpolate precipita-
tion and temperature are located at a distance 
of 36km and 39km, respectively. A map showing 
the location of villages and weather stations is 
provided in Figure 1.

Following Jessoe et al. (2018), I predict mis-
sing data by regressing weather in the closest sta-
tion, on weather of the remaining 4 stations assig-
ned to the village. I use the predicted values from 
this regression to fill in missing values. Weather 
at time t  in station n  will remain missing if it is 
also missing in at least 1 of the other 4 stations. 
To fill in the remaining missing observations, this 
regression is repeated while dropping the most 
distant station in each iteration until there are no 
more stations to predict weather (i.e. after wea-
ther in the closest weather station is regressed on 
weather of the second closest station). This pro-
cess is subsequently applied to the second, third, 
fourth and fifth closest stations. The number of 
predicted missing observations varies by village, 
however, on average, it represents about 10.0% 
of the total number of observations.11 After com-
pleting the interpolation procedure, weighted 
averages of temperature and precipitation were 
successfully obtained for about 98.0% of the sam-
ple days.12

The calculation of climate variables relies on 
daily weather information for the 30 years prece-
ding each survey round. That is, I use information 
from the period of 1972-2001 to represent cli-
mate in 2002 and information from the period of 

1977-2006 to represent climate in 2007. PVAL is 
estimated from an agricultural production func-
tion that aggregates all the different crops grown 
by the households over the whole year. Conse-
quently, the main Ricardian specification of this 
paper associates PVAL with measures of annual 
climate.

The climate measure for annual precipitation 
is calculated as the 30-year average of yearly ac-
cumulated precipitation for each of the two pe-
riods previously defined. With regards to tem-
perature, the simple calculation of annual or 
seasonal averages would not take advantage of 
the rich daily variability in temperature observed 
in weather station data. Moreover, plant growth 
does not benefit from heat over the whole tem-
perature range. Above and below certain thres-
holds, temperatures might be harmful for plant 
health. To capture the importance of optimal 
growing conditions and extreme temperatures, I 
transform daily observations of temperature into 
Growing Degree Days (GDD) and Harmful Degree 
Days (HDD) adopting the 8-32oC range used in re-
lated literature (Schlenker et al., 2006; Schlenker 
and Roberts, 2009; Jessoe et al., 2018). Daily tem-
perature T  was calculated as the average of daily 
maximum and minimum temperatures and con-
verted to GDD and HDD using the following defi-
nitions:
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Climate measures of GDD and HDD are cons-
tructed by calculating a 30-year average in each 
period. Table 5 presents summary statistics of 
the climate variables. The Southeast region of 
Mexico displays the highest average annual pre-

11 The interpolation of weather to every village uses the in-
formation of 5 weather stations. Between January 1st, 1972 
and December 31, 2007 there are 13,149 days giving a total 
of 65,745 observations.

12 There are 13,149 days in the sample period which gives a 
total of 1,051,920 sample days for the 80 ENHRUM villages.
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cipitation while the mostly-semiarid northern 
regions have the lowest levels. On average, the 
Southeast is the hottest region but the Northwest 
has comparable average temperatures. HDD are 
highly concentrated in the Northwest. Overall, the 
difference between climate in 2002 and 2007 is 
minimal.

When estimating the Ricardian equation, one 
might be worried that the climate variability ob-
served in the sample might not be enough to es-
timate the effects of climate on agricultural pro-
ductivity after conditioning on different sets of 
location and time fixed effects. An a priori evalua-
tion of the residual variability on climate shows 
that the inclusion of state and state-by-year fixed 
effect soaks up a large fraction of the variation in 
climate, (see Table A.1). It is important to con-
sider this residual variation when deciding the 
level of location fixed effects to be included in the 
regression. On one hand, we want to control as 
flexibly as possible for unobserved time-invariant 
and time-varying factors potentially correlated 
with agricultural productivity. On the other hand, 
we also want the residual variation in climate left 
after the inclusion of such location and time fixed 
effects to be sufficiently large so that results are 
still informative of the effect of climate on agri-
cultural productivity. Taking this into account, 
the estimation of Equation 10 only controls for 
region and year fixed effects. A robustness test 
using region-by-year fixed effects is also provi-
ded. 

Soil data for each village were obtained from 
FAO’s Digital Soil Map of the World (FAO, 2007). 
Using each village’s location, the class of domi-
nant soil was extracted and then grouped into the 
following 15 major soil types: Acrisols, Cambi-
sols, Rendzinas, Gleysols, Phaozems, Litosols, Flu-
visols, Kastanozems, Luvisols, Nitosols, Regosols, 
Andosols, Vertisols, Xerosols and Yermosols.

Results

Results obtained from the estimation of Equa-
tion 10 are reported in Table 6. The dependent 
variable in column (1) is the natural logarithm of 
the estimated PVAL while in column (2) the natu-
ral logarithm of self-reported land values is used 
instead. In columns (3) and (4) region-by-year 
fixed effects are included in lieu of region and 
year fixed effects. Table 6 only reports results for 
relevant variables but other controls include the 
variables in Table 4 and 14 categories of major 
soil types. Standard errors are clustered at the 
village level which accounts for the potential he-
teroscedasticity arising from the fact that the de-
pendent variable is estimated (Lewis and Linzer, 
2005; Auffhammer, 2022).

Extreme temperatures (HDD) have a large ne-
gative and statistically significant effect on PVAL. 
A one-unit increase in HDD decreases agricultu-
ral productivity by 1.5%. This result is consistent 
with Jessoe et al., (2018) who find that extreme 
temperatures affect local employment choices 
using the same dataset. GDD have the expected 
sign in all specifications but do not achieve sta-
tistical significance. Self-reported market land 
values fail to capitalize the effect of good or bad 
growing conditions, i.e. the coefficients on GDD 
and HDD have the expected direction but are not 
statistically significant.13 All of the regressions 
document a concave and statistically significant 
relationship between precipitation and agricul-
tural productivity. The middle section of Table 
6 displays the implied optimal level of precipita-
tion ( P* ) and the marginal effect when evaluated 
at its sample mean ( Pr ). According to the PVAL 
specifications, the optimal level of accumulated 
precipitation is found around 2,050mm. Self-re-
ported land values place this level at around 
1,580mm. Also, all of the marginal effects are po-
13 These results also highlight the importance of exploiting 

daily variation in temperature when estimating its effects 
on agricultural productivity. Estimate relying on average 
temperatures might fail to identify the negative effects of 
extreme temperatures on agricultural productivity (see 
Table A.2).
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sitive and statistically significant. Results using 
PVAL indicate that a 1mm increase in precipita-
tion increases agricultural productivity by 0.15%, 
or approximately $150 Mexican pesos relative to 
the average estimated PVAL (see Table 3). When 
using market land values, the marginal effect is 
0.07%, which is equivalent to $53 Mexican pesos 
relative to the average market land value obser-
ved in the sample (see Table 3). Thus, market 
land values underestimate the positive effect that 
more precipitation has on agricultural producti-
vity.14

Access to formal credit has a positive and sta-
tistically significant effect on agricultural produc-
tivity only when PVAL is used. This result sug-
gests the existence of binding credit constrains in 
rural Mexico. Access to credit boosts productivity 
and self-reported land values do not capitalize 
the marginal gain associated to an additional unit 
of working land.15 Access to irrigation is positive 
and statistically significant in all specifications 

¹⁴ Ricardian estimates for Mexico have been previously repor-
ted by Mendelsohn et al. (2010) and Galindo et al. (2015). 
However, the results of this paper are not directly compa-
rable with their results due to different methodological 
approaches, particularly with regard to the construction 
of the temperature and precipitation variables. Specifically, 
they express land values (Mendelsohn et al., 2010) or agri-
cultural net revenues (Galindo et al., 2015) as a quadratic 
function of quarterly temperature and precipitation. In this 
paper, temperature is transformed into GDD and HDD. Then, 
PVAL and market land values are expressed as a function of 
GDD, HDD and (quadratic) precipitation accumulated over 
the whole cropping season year. Both studies document ne-
gative effects of marginal increases in annual temperature 
and precipitation. The estimated negative effect of precipi-
tation is mainly explained by increases in winter and fall 
precipitation that are detrimental for land valuation or pro-
fitability. 

¹⁵ This result, however, should be interpreted with caution as 
access to credit may be determined by agricultural produc-
tivity and agricultural productivity could also be determi-
ned by having access to credit. This endogeneity, potentially 
arising from simultaneity, could bias the estimated parame-
ters. Table A.3 (in the Appendix) shows that the exclusion 
of the variable identifying access to formal credit does not 
fundamentally change the main results, which suggest that 
the potential endogeneity of access to credit might not be a 
large issue in the working sample.

but the estimated coefficient is higher when PVAL 
is used, meaning that the productivity returns 
to irrigation are higher than its capitalization 
on land valuation. Also, factors like urbanization 
and housing affect self-reported market land va-
lues but not PVAL. The coefficient on the distance 
to the nearest city is negative and significant in 
columns (2) and (4). The closer the village is to 
an urban center, the higher its market land va-
lue. PVAL is unaffected by the proximity to a city 
which suggest that off-farm factors affecting land 
valuation do not affect PVAL.

Surprisingly, private ownership does not in-
crease agricultural productivity or market land 
values. A possible explanation of this result is 
that the process of transitioning from ejido to pri-
vate ownership in Mexico has been slow which 
has prevented land consolidation and the invest-
ments incentives associated with it (de Janvry et 
al., 2015; Binder, 2015). Thus, in practice, private 
land in small agricultural communities, such as 
the villages in our sample, might not be much di-
fferent from ejido land in terms of productivity or 
market valuation. Finally, smaller farms (as mea-
sured by the amount of land in production) have 
a larger productive or market values per unit of 
land, a result consistent with findings from the 
development literature (Kagin et al., 2016).

Robustness
In Table 6, PVAL measures and self-reported 
land values are regressed on annual measures of 
climate. The rationale is that PVAL is estimated 
using information from the two cropping seasons 
throughout the year. Double cropping could be, by 
itself, a form of adaptation to climate change. Si-
milarly, market land values are expected to capi-
talize the full flow of annual profits when farmed 
in one or in both seasons. However, agricultural 
production in Mexico is highly concentrated in 
the Spring-Summer season (55.3% of the total 
farmed land in 2007; SIAP, 2023). In columns (1) 
and (2) of Table 7, the annual climate variables 
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have been substituted with seasonal climate va-
riables constructed using weather information 
for the months of March to September, the period 
officially considered as the Spring-Summer sea-
son in Mexico (SADER, 2017). Results are qualita-
tively similar to those reported in Table 6.

The main findings of Table 6 are also robust 
to the exclusion of precipitation from the Ricar-
dian equation (columns (3) and (4) in Table 7) 
proving that the result is not due to correlation 
among the climate variables.

Conclusions
In this paper, I propose a novel version of the 
Ricardian approach that relies on a shadow va-
luation of land recovered from the estimation 
of an agricultural production function. This me-
asure, that I call the productive value of agri-
cultural land, or PVAL, internalizes any shadow 
components associated with the constraints 
that farmers face, reflecting more properly the 
market setting in which farmers make decisions. 
Also, this measure purely reflects land produc-
tivity and is thus free of the other factors pollu-
ting market land values that have prompted the 
omitted variable bias criticism raised around 
the Ricardian model. I argue that the use of this 
shadow measure as the dependent variable in a 
Ricardian estimation leads to more accurate es-
timates of the relationship between climate and 
land productivity, particularly in settings where 
markets are not perfectly competitive.

When the proposed approach is applied to 
data of rural households in Mexico, I find that in-
deed, when using PVAL, the relationship between 
climate and agricultural productivity is stronger 
and more precisely estimated. Specifically, ex-
tremely high temperatures decrease land pro-
ductivity while more precipitation increases it. 
Market land values fail to capitalize the negative 
effects of extreme temperatures and underesti-
mate the positive effect of more precipitation. 
Altogether, the findings of this article suggest 

that in settings where markets are incomplete, 
the use of market land values to represent long-
run farm productivity in the Ricardian approach 
may lead to an underestimation of the effect that 
climate change may have on agriculture. 

The Ricardian approach continues to be a 
useful tool to get insights about the potential 
effects of climate change on agricultural pro-
ductivity but future researchers considering 
implementing it should also pay attention to the 
market setting of the context in which it is going 
to be applied. In a developing country setting, it 
is important to estimate those losses with a me-
thodology that rightfully captures land produc-
tivity in the context of constrained production, 
particularly if public policies promoting adap-
tation in developing countries will be designed 
based on such estimations.

The methodology that I propose in this paper 
addresses an issue so far ignored in the applica-
tion of the Ricardian approach: non-competitive 
markets. It also addresses the issue of omitted 
factors polluting the Ricardian estimates by re-
lying on a shadow valuation of land that only 
reflects agricultural productivity. Yet, there are 
still several caveats that apply to this analysis. 
First, omitted variables could still affect the Ri-
cardian estimates based on PVAL, particularly 
those affecting farm productivity and not ac-
counted for in the estimation of the production 
function. Second, the implementation of the Ri-
cardian approach using PVAL relies on getting 
unbiased estimates of the parameters governing 
the agricultural production function, which is 
only plausible when panel data is available for 
such purpose. As a result, the implementation 
of the approach proposed in this paper might 
be limited in settings where panel data does 
not exist. Finally, the panel I use in this paper is 
only two-years long. The shortness of my data 
prevents me from including fixed effects more 
geographically disaggregated such as at the sta-
te, village or household levels. The residual va-
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relationship between climate and agricultu-
ral productivity could vanish, either using PVAL 
or market land values. This highlights the enor-
mous advantage of having access to long data 
sets when estimating the Ricardian approach.
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Table 1
Summary statistics of agricultural variables

Pooled Sample
(N = 1,104)

2002
(N = 566)

2007
(N = 538)

Variable Mean sd Mean sd Mean sd

Output value (pesos per ha) 9,540.8 19,833.6 8,770.5 19,606.3 10,351.3 20,056.3

Land in production (has) 4.6 6.8 5.3 7.6 3.8 5.6

Labor (days per ha) 65.2 216.6 58.6 234.8 72.2 195.5

Intermediate inputs (pesos per ha) 4,984.5 23,867.3 5,107.9 30,863.4 4,854.7 12,954.1

Value added (pesos per ha) 4,556.3 26,629.8 3,662.6 32,579.8 5,496.5 18,386.9

Note: Monetary values are expressed in real pesos of June 2012.

Table 2
Production function parameter estimates

(1)
OLS

(2)
Fixed effects

(3)
Levinson and Petrin

ln labor days Lit] ^ ]g h g 0.228***
(0.036)

0.245***
(0.057)

0.196***
(0.038)

ln land hectares Tit] ] ]g g g 0.425***
(0.041)

0.424***
(0.106)

0.489***
(0.202)

ln int ermediate inputs pesos Lit^ ^ ]h h g 0.427***
(0.030)

0.118*
(0.062)

0.264
(0.282)

Year FE Yes Yes  Yes

Observations 1,104 1,104 1,104

R-squared 0.436 0.780  –

Constant returns to scale test (p-value) 0.072 0.063 0.662

Number of household 720

p.55

p.55

p.56

Note: In OLS and fixed effect, standard errors are clustered at the household level. In LP standard errors are derived using 50 
bootstrap replications. * p<0.10, ** p<0.05, *** p<0.01.
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Self-reported PVAL Diff.

N Mean sd Mean sd Mean sd

a) Pooled 

National 727 75,597.3 121,041.8 100,202.8 201,624.8 -24,605.5*** 216,459.6

Southeast 189 40,680.2 73,157.7 50,859.9 72,693.5 -10,179.7* 81,314.5

Center 276 108,177.9 142,258.0 103,704.3 205,878.7 4,473.6 241,480.8

Center-west 131 84,942.3 131,110.3 104,887.1 154,368.8 -19,944.9 162,905.3

Northwest 50 97,228.2 139,590.9 335,317.4 441,723.0 -238,089.1*** 451,087.6

Northeast 81 17,589.3 23,710.5 50,696.6 98,523.1 -33,107.3*** 97,260.1

b) 2002

National 418 61,492.4 105,349.9 96,033.2 207,590.3 -34,540.8*** 213,421.9

Southeast 121 38,128.0 78,312.4 56,417.7 84,492.6 -18,289.7** 91,829.3

Center 148 85,780.5 125,308.8 78,690.6 153,278.4 7,089.9 189,123.3

Center-west 79 65,794.8 86,634.6 98,484.5 162,360.3 -32,689.8** 129,947.4

Northwest 29 91,766.3 159,375.4 405,498.9 530,380.9 -313,732.6*** 543,083.6

Northeast 41 13,068.6 15,614.6 51,935.6 126,012.9 -38,867.0** 122,343.3

c) 2007

National 309 94,677.7 137,379.6 105,843.2 193,452.7 -11,165.5 220,135.5

Southeast 68 45,221.6 63,252.1 40,970.1 43,432.5 4,251.5 55,855.9

Center 128 134,074.9 156,158.1 132,626.4 251,026.7 1,448.5 291,291.4

Center-west 52 114,031.8 175,805.6 114,614.2 142,358.2 -582.4 202,944.0

Northwest 21 104,770.9 109,891.1 238,400.0 259,252.8 -133,629.1** 256,624.2

Northeast 40 22,223.0 29,319.5 49,426.6 60,180.6 -27,203.5*** 63,102.0

Table 3
Market land values vs PVAL estimates (pesos per hectare) p.56

p.60

Note: The regional distribution of the 14 states of the ENHRUM sample is as follows: a) Southeast: Oaxaca, Veracruz and Yucatán; 
b) Center: Estado de México, Puebla; c) Midwest: Guanajuato, Nayarit, Zacatecas; d) Northwest: Baja California, Sinaloa, Sonora; 
e) Northeast: Chihuahua, Durango, Tamaulipas.
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Pooled sample
(N=1,104)

2002
(N=566)

2007
(N=538)

Variable Mean sd Mean sd Mean sd

a) Agriculture

Private ownership 0.30 0.46 0.31 0.46 0.28 0.45

Rents plots (in or out) 0.10 0.30 0.09 0.29 0.10 0.31

Other land-sharing agreements 0.14 0.34 0.14 0.35 0.13 0.33

Access to irrigation 0.27 0.45 0.28 0.45 0.27 0.44

Received PROCAMPO1 0.52 0.50 0.55 0.50 0.48 0.50

Has a tractor 0.11 0.31 0.10 0.30 0.11 0.32

b) Sociodemographics

Access to formal lending 0.08 0.27 0.08 0.28 0.07 0.25

Access to informal lending 0.19 0.39 0.23 0.42 0.16 0.36

Age of household head (years) 53.36 14.65 51.33 14.68 55.49 14.32

Household head is a male 0.92 0.27 0.92 0.27 0.92 0.27

Household head speaks an indigenous 
language 0.33 0.47 0.36 0.48 0.31 0.46

Household head’s education (years) 3.91 3.32 3.73 3.32 4.09 3.31

Received PROGRESA2 0.46 0.50 0.51 0.50 0.40 0.49

c) Geography

Altitude (meters) 1,323.1 953.2 1,302.1 955.5 1,345.3 951.2

Distance to the nearest city (km)3 7.5 8.4 7.6 8.3 7.4 8.4

Table 4
Summary statistics of household characteristics p.57

p.59

Notes: 1) PROCAMPO is direct income support program for farmers; 2) PROGRESA is a conditional cash transfer program for poor 
families; 3) obtained using village information and urban polygons of 2010 National Census (INEGI, 2010). An urban center is 
defined as a localities with at least 2,500 inhabitants.
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2002 2007

Region N P(mm) T(°C) GDD HDD P(mm) T(°C) GDD HDD

National 80 867.3 20.2 4,396.7 4.46 860.6 20.3 4,413.7 5.37

Southeast 16 1,406.7 23.8 5,640.8 0.40 1,396.7 23.8 5,646.9 0.51

Center 16 1,238.5 16.1 2,927.4 0.00 1,213.8 16.2 2,937.3 0.00

Mid-west 16 724.7 19.8 4,283.7 0.01 728.9 19.8 4,292.1 0.01

Northwest 16 476.2 22.9 5,345.6 21.6 478.1 23.1 5,435.9 26.01

Northeast 16 490.6 18.3 3,786.2 0.30 485.6 18.4 3,756.5 0.30

Table 5
Summary statistics of climate variables p.58

Note: Climate variables are calculated using daily information for the 30 years preceding each survey round.
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Table 6
Ricardian regressions of PVAL and self-reported land values and annual measures of climate p.59

p.60

p.61

Note: Clustered standard errors at the village level are reported in parentheses. Regressions include all the variables sum-
marized in Table 4 and fifteen categories of major soil types. The age and indigenous background of the household head 
have a negative effect on PVAL and are the only sociodemographics with statistical significance. Altitude and soil types 
are highly significant in all regressions. *p < 0.10, **p < 0.05, ***p < 0.01

(1) (2) (3) (4)

Variable ln PVAL] g ln (self-reported) ln (self-reported)

GDD 0.000015
(0.000130)

0.000091
(0.000133)

0.000009
(0.000132)

0.000089
(0.000133)

HDD -0.015496*
(0.008425)

-0.006339
(0.011063)

-0.015177*
(0.007857)

-0.006212
(0.010983)

P 0.003247***
(0.000819)

0.002369**
(0.000888)

0.003200***
(0.000833)

0.002324**
(0.000894)

P2 -0.000001**
(0.000000)

-0.000001**
(0.000000)

-0.000001**
(0.000000)

-0.000001**
(0.000000)

Land in production (has) -0.036587***
(0.010666)

-0.024746***
(0.006935)

-0.037262***
(0.010675)

-0.024776***
(0.006969)

Access to irrigation 1.045263***
(0.137444)

0.596464***
(0.128479)

1.037653***
(0.137452)

0.592293***
(0.126221)

Access to formal credit 0.507907***
(0.136567)

0.087750
(0.153970)

0.514732***
(0.136238)

0.092837
(0.155171)

Distance to the nearest city (km) -0.013498
(0.009325)

-0.044360***
(0.009720)

-0.012945
(0.009580)

-0.044182***
(0.009894)

Private ownership -0.006149
(0.089106)

-0.033831
(0.100481)

-0.008190
(0.092026)

-0.032750
(0.100469)

P* 2053.766***

(239.3249)
1577.595***

(220.6674)
2064.083***

(244.5255)
1580.753***

(226.9516)

Marginal effects of P 0.001564***

(0.0003545)
0.0007397*

(0.0003866)
0.001549***

(0.0003612)
0.0007289*

(0.0003855)

P 1064.981 1084.998 1064.981 1084.998

Observations 1,104 908 1,104 908

R-squared 0.366 0.476 0.368 0.477

Year and region FE YES YES NO NO

Region-by-Year FE NO NO YES YES

Region-by-Year FE NO NO YES YES
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Spring-Summer Annual with no precipitation

(1) (2) (3) (4)

Variable ln PVAL] g ln (self-reported) ln PVAL] g ln (self-reported)

GDD -0.000058
(0.000234)

0.000122
(0.000224)

-0.000063
(0.000168)

 0.000009
(0.000137)

HDD -0.012658*
(0.007065)

-0.004416
(0.009930)

-0.021385**
(0.010202)

-0.012709
(0.013661)

P 0.004451***
(0.001072)

0.003922**
(0.001171)

p2 -0.000001**
(0.000000)

 -0.000002**
(0.000001)

Land in production (has) -0.037333***
(0.010687)

-0.024537***
(0.006837)

 -0.040722***
(0.011785)

-0.025221***
(0.007217)

Access to irrigation 1.021737***
(0.135868)

 0.585115***
(0.122276)

 1.004245***
(0.129600)

 0.630144***
(0.131251)

Access to formal credit 0.507237***
(0.134946)

0.087600
(0.152107)

 0.521458***
(0.129339)

0.083901
(0.161930)

Distance to the nearest city (km)  -0.010531
(0.009270)

 -0.042178***
(0.009541)

 -0.015839
(0.011431)

-0.048277***
(0.011281)

Private ownership -0.015609
(0.09132)

-0.049513
(0.101765)

0.121361
(0.115214)

0.029388
(0.099378)

Observations 1,104 908  1,104  908

R-squared  0.371  0.484  0.336 0.464

Region-by-Year FE  YES YES  YES  YES

Table 7
Robustness of the results to alternative definitions of climate p.60

p.61

Note: Clustered standard errors at the village level are reported in parentheses. Regressions include all the variables 
summarized in Table 4 and fifteen categories of major soil types. Regressions include region-by-year fixed effects. When 
region and year fixed effects are included separately, results are similar. *p < 0.10, **p < 0.05, ***p < 0.01
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Table A.1
Residual variation in climate

Number of household-year observations for which predicted climate 
differs from observed climate by more than

p.59 

Appendix

Fixed effects (1) (2) (3) (4) (5)

Panel a) Annual temperature Mean (sd) = 19.329 (4.545)

0.5◦C 1.0◦C 1.5◦C 2.0◦C 2.5◦C

State and Year 745 570 425 336 226

Region and Year 1,030 891 846 667 549

State-by-Year 765 566 433 344 226

Region-by-Year 1,028 896 837 654 556

Panel b) Annual GDD Mean (sd) = 4,077.1 (1,645.7)

100 GDD 200 GDD 300 GDD 400 GDD 500 GDD

State and Year 921 736 671 558 503
Region and Year 1,058 1,030 963 915 878
State-by-Year 908 745 669 558 504
Region-by-Year 1,049 1,031 962 900 878

Panel c) Annual HDD Mean (sd)=0.676 (4.793)

0.5 HDD 1.0 HDD 1.5 HDD 2.0 HDD 2.5 HDD

State and Year 157 74 69 47 47

Region and Year 111 105 100 66 66

State-by-Year 139 71 71 44 44

Region-by-Year 109 105 104 66 66

Panel d) Annual precipitation Mean (sd) =1,065.0 (639.9)

100mm 200mm 300mm 400mm 500mm

State and Year 624 546 417 362 277

Region and Year 924 770 682 566 388

State-by-Year 607 515 423 332 261

Region-by-Year 952 748 695 537 418

N= 1,104

Note: This table (adapted from Jessoe et al., 2018) reports the extent of the residual variation of climate left after con-
trolling for the different sets of location and time fixed effects listed in the Fixed effects column. Each panel shows the 
number of observations for which the absolute value of predicted climate differs from observed climate by more than the 
number in the head of each column. For example, in panel a), the cell at the intersection of the first row and column (1) 
indicates that after regressing annual temperature on state and year fixed effects, the absolute value of the predicted 
temperature was at least 0.5◦C higher than observed temperature in 745 (out of 1,104) observations. When conditioning 
on regional and year fixed effects, this number increases to 1,030 or 93% of the total number of observations. The inter-
pretation of columns (2) to (5) and of panels b) to d) is similar.
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Table A.2
Ricardian regressions of PVAL and self-reported land values on temperature and precipitation p.59 

(1) (2) (3) (4)

Variable ln PVAL] g ln (self-reported) ln PVAL] g ln (self-reported)

T 0.172177
(0155713)

-0.192224
(0.224604)

0.169660
(0.156898)

-0.196040
(0.222797)

T2 -0.004543
(0.003783)

0.006128
(0.006328)

-0.004542
(0.003799)

0.006187
(0.006305)

P 0.003481***
(0.000793)

0.002326**
(0.000846)

0.003432***
(0.000806)

0.002274**
(0.000850)

P2 -0.000001***
(0.000000)

-0.000001**
(0.000000)

-0.000001***
(0.000000)

-0.000001**
(0.000000)

Land in production(has) -0.037308***
(0.009937)

-0.026337***
(0.006985)

-0.037978***
(0.009954)

-0.026342***
(0.007032)

Access to irrigation 1.065637***
(0.139251)

0.577286***
(0.135324)

1.058398***
(0.138817)

0.573114***
(0.133461)

Access to formal credit 0.512982***
(0.135520)

0.090416
(0.153156)

0.520089***
(0.135338)

0.095245
(0.154445)

Distance to the nearest city (km) -0.011184
(0.008903)

-0.043861***
(0.009812)

-0.010652
(0.009155)

-0.043720***
(0.009983)

Private ownership -0.021147
(0.085283)

-0.008556 
(0.098468)

-0.023141 
(0.087786)

-0.007300 
(0.098622)

R-squared 0.366 0.478 0.368 0.479

Observations 1,104 908 1,104 908

Year and region FE YES YES NO NO

Region-by-YearFE NO NO YES YES

Note: Clustered standard errors at the village level are reported in parentheses. Regressions include all the variables 
summarized in Table 4 and fifteen categories of major soil types. *p < 0.10, **p < 0.05, ***p < 0.01
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Table A.3
Ricardian regressions of PVAL and self-reported land values omitting

access to formal credit
p.60

(1) (2) (3) (4)

Variable ln PVAL] g ln (self-reported) ln PVAL] g ln (self-reported)

T 0.000018 
(0.000130)

0.000090 
(0.000132)

0.000012 
(0.000131)

0.000088 
(0.000133)

T2 -0.016279* 
(0.009319)

-0.006497 
(0.011277)

0.015999* 
(0.008807)

-0.006396 
(0.011228)

P 0.003288*** 
(0.000828)

0.002364*** 
(0.000888)

0.003236*** 
(0.000844)

0.002319** 
(0.000894)

P2 -0.000001*** 
(0.000000)

-0.000001** 
(0.000000)

-0.000001*** 
(0.000000)

-0.000001** 
(0.000000)

Land in production(has) -0.033361*** 
(0.011090)

-0.024303*** 
(0.007173)

-0.034017*** 
(0.011100)

-0.024310*** 
(0.007198)

Access to irrigation 1.075268*** 
(0.140288)

0.601832*** 
(0.127835)

1.067800*** 
(0.140762)

0.597841*** 
(0.125673)

Access to formal credit

Private ownership -0.027631 
(0.086260)

-0.037403 
(0.100953)

-0.029948 
(0.089211)

-0.036529 
(0.100971)

Distance to the nearest city (km) 0.014887 
(0.009303)

-0.044604*** 
(0.009654)

-0.014422 
(0.009537)

-0.044455*** 
(0.009823)

R-squared 0.359 0.476 0.360 0.476

Observations 1,104 908 1,104 908

Year and region FE YES YES NO NO

Region-by-YearFE NO NO YES YES

Note: Clustered standard errors at the village level are reported in parentheses. Regressions include all the
variables summarized in Table 4 and fifteen categories of major soil types. * p<0.10, ** p<0.05, *** p<0.01
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Figure 1
Location of ENHRUM villages and weather stations p.59

Note: The map shows the location of the 80 ENHRUM villages and the weather stations used to interpolate weather data to each village. 
The interpolation is limited to the 5 closest weather stations.

Northwest
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Villages Stations
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