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 ■ Abstract: Value at Risk (VaR) is a commonly used downside-risk measure giving 
the worst-case asset loss over a target horizon for a given confidence level. Implied 
correlation from VaR is an alternative form of the correlation coefficient calcu-
lated not only based on historic performance, but taking into account a forecast 
of the worst-loss. Given its importance, here we present a treatment that is acces-
sible to undergraduate students in economics, finance and similar areas with the 
aim of familiarising the reader with this risk measure. With the use of three case 
studies we analyse the effect that implied correlation from VaR has on portfolios of 
increasing asset size. The VaR of each asset is calculated as well as a mean implied 
correlation, ρ, which is used to adjust the original portfolio’s invested fractions in 
order to view the shift in risk and return. We track comparative portfolios over 
a 50-day period to identify trends between portfolio type and risk encountered.

 ■ Keywords: Implied correlation, Value at Risk, VaR, Portfolio construction, Risk. 
 ■  JEL Classification: G11, C60, D81.

 ■ Resumen: Valor en Riesgo (VaR) es una medida usada comúnmente para esta-
blecer, dado un nivel de confianza, el peor caso de pérdidas en activos. La corre-
lación implícita obtenida a partir de VaR es una forma alternativa del coeficiente 
de correlación calculada basándose en rendimiento histórico y en un pronóstico 
de la peor pérdida. En este trabajo presentamos un tratamiento accesible para 
estudiantes de economía, finanzas y áreas afines con el objetivo de familiarizar al 
lector con este estimador de riesgo. Con el uso de tres estudios de caso analizamos 
el efecto que la correlación implícita apartir de VaR tiene en carteras de tamaño 
creciente. Calculamos el VaR de cada activo así como la media de correlación 
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implícita. Dicho valor es usado para ajustar las fracciones del presupuesto en la 
cartera original. Hacemos un seguimiento comparativo de carteras en un plazo 
de 50 días para identificar tendencias entre el tipo de cartera y riesgo encontrado. 

 ■ Palabras clave: Correlación implícita, Valor en riesgo, Construcción de 
portafolios, Riesgo.

 ■ Clasificación JEL: G11, C60, D81.
 ■ Recepción 23/01/2013       Aceptación 10/06/2014

 ■ Introduction

Value at Risk, or VaR, is a commonly used downside-risk measure giving the worst-
case asset-loss over a target horizon for a given confidence level  (Jorion, 2001). VaR 
came into prominence in 1993 when it was unveiled as part of JP Morgan’s revolutionary 
RiskMetrics system (Dowd, 2002) which was designed to give a daily one page summary 
of all risk across the bank’s trading portfolio, with VaR being one of its key elements. 
Today, VaR is a mainstay of financial risk management; its relative simplicity ensures its 
popularity in executive environments. Given its importance, we believe that presenting 
an accessible discussion of the implementation of a portfolio construction methodol-
ogy will be of great benefit to both newcomers to the area as well as seasoned investors. 

When investors face the question of the assets they are interested in holding in 
efficient portfolios, one of the most important inputs they take into account is the 
correlation between the assets (Elton et al., 2008; Strong, 2008). It is usually the case 
that correlation is treated as a constant and unconditional variable, however it is easy 
to see that it actually varies through time and several studies have provided evidence 
to that effect (Von Furstenberg and Jeon, 1989; Erb et al., 1994; Longin and Solnik, 
1995). In this paper, we use the concept of implied correlation to provide a more ac-
curate measure of VaR and present some specific examples of its applicability. The 
idea is to use implied correlation as a method to estimate the future correlation as 
a way to improve on the direct use of historical information considering the cor-
relation as a constant. VaR based on implied correlation is an estimator that is not 
widely discussed and the main objective of this paper is to provide some working 
examples that enable interested readers to understand this measure, use it and im-
prove on it. With that in mind, the topics addressed here are presented following 
considerations that can be found in introductory literature to the subject so as to 
make the material relevant and suitable to a wider readership. We have decided to 
use some straightforward case studies to demonstrate the implementation of VaR 
based on implied correlation and as such the results are applicable to those case 
studies. Nonetheless, we are convinced that a better understanding of this measure 
by a wider audience is of benefit to all.
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 ■ Theoretical Framework

Let us start with a discussion about VaR itself. As mentioned above, VaR can be de-
scribed as the maximum potential asset loss, over a given time period for a particular 
confidence level. VaR can be identified through a quantile of a return distribution 
function and therefore the VaR of a portfolio is simply a percentile of its return 
distribution over a fixed time horizon,  (Holton, 2003; Jorion, 2001). Value at 
Risk is therefore equal to the smallest number k in the real numbers  such that 
the probability of loss L greater than k over , , is at most equal to , 
where  is the confidence level; in mathematical terms:

(1)  

The information that VaR provides to investors is generally interpreted as a 
measure of the risk they face (Christoffersen et al., 2001). In other words, for an 
investor or an institution to require, for instance, a time horizon of 10 days and a 
confidence level of 99%, we end up with a critical value for VaR of 0.01 of the prob-
ability distribution of changes in the market (Duffie and Pan, 1997).

Together with VaR, the idea of correlation has become ubiquitous in the area of 
finance and the latter is typically used as a measure of dependence between different 
financial instruments and one that can be used in the problem of portfolio selection and 
construction (Embrechts, 2002; Campbell et al., 2001). In general terms the correlation 
between two assets provides us with a measure of how well these two assets move in 
conjunction with one another and its interpretation is quite straightforward given the 
fact that its values are bounded between -1 and 1 (Brigham and Ehrhardt, 2013). The 
correlation coefficient, , between assets  and  is expressed as a ratio between the 
covariance, , of the two assets under consideration and the product of their standard 
deviations. In the case of two assets, we have that the correlation coefficient is given by:

(2)    

and the covariance is defined as usual:

(3)   

where  represents the average (expected) return of asset , and standard 
deviation is the square root of the asset variance. 

In general, the methods used for the calculation of correlation rely in greater 
part on the calculation of the Spearman correlation coefficient based on historical 
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data (Rees, 2001). In the case of correlation forecasting, the most common method-
ology is the use of an exponentially weighted moving average correlation estimator 
(Hull and White, 1998) taking into consideration the variation of correlation with 
time. It is important to mention that in the cases mentioned above the forecast is 
based still in historical values. In the next section we will show how to use the com-
bination of the assets in a portfolio to measure a correlation implied by the assets 
themselves in combination.

 ■ Portfolio VaR and Implied Correlation

In order to motivate the discussion of the use of implied correlation in Value-at-
Risk calculations let us consider the simplest of portfolios that can be construct-
ed, i.e. a two-asset portfolio with weights x1 and x2 and complying with the full 
investment constraint (Ning, 2007) such that x1+x2=1. The distribution of price 
changes of each of the assets in this portfolio, also known as risk factors (Cotter 
and Longin, 2007) can be estimated to evaluate the individual Value-at-Risk of 
the assets. We can denote these risk factors as  and . The Value-at-Risk of 
the portfolio, , can then be computed using an aggregation formula as done 
by Cotter and Longin (2007), using Markowitz’s portfolio theory (Markowitz, 
1952), and in particular the  formulation of risk. The authors described the 
portfolio VaR as a weighting of each asset’s worst-case loss, as opposed to vari-
ance in the case of risk:

(4)  

where  is the invested fraction in asset  and  is the Value at Risk of asset 
. We would like to point out the similarity between expression (4) above and the 

risk for a two-asset portfolio (Markowitz, 1952). Please note that equation (4) uses 
explicitly the correlation coefficient of the asset price changes. 

In this work, we are interested in extending the portfolio from two to  assets, 
and thus the following portfolio VaR formula is obtained:

(5)  

By noting the correlation term, , appearing in the portfolio VaR formula, 
the implied correlation may be defined. In this case, instead of measuring the 
relationship between two assets based on past performance, by rearranging the 
expression for the portfolio VaR, the implied correlation takes into account a 
forecast of worst-case loss as well. Hence, it is more a measure of the implied 
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correlation between assets within the portfolio in light of the worst-case scenario 
and it can be used as a measure of future (short-term) correlation. To simplify 
calculations, a mean correlation value ( ρ ) can be used in the equation (5) (Aneja, 
1989), replacing individual pairwise terms. This enables the common correlation 
term to be directly obtained. Hence, the mean implied correlation is obtained in 
an -asset case as:

(6)   

The difficulties involved in estimating the required inputs to calculate cor-
relation coefficients are well-known and the number of required estimates make 
it rather impractical. Attempts at addressing these difficulties have been put 
forward, including the Single Index Model (SIM) (Sharpe, 1963) for instance. 
Aneja et al. (1989) show a procedure to estimate an average correlation coef-
ficient, which in turn produces better forecasts of the future correlation matrix 
than those obtained from SIM or the full historical correlation matrix. We note 
that the expression in Equation (6) is valid within the framework of Markow-
itz theory (Markowitz, 1952) and under normality conditions. In this work, an 
implied correlation value will be investigated and applied to portfolios of in-
creasing asset size with the aim of assessing whether its consideration can offer 
advantages in terms of portfolio risk perception. We would like to note that our 
aim is to provide the interested reader with formulations that can further be re-
fined and exploited, rather than a definitive new tool. Taking that into account, 
we believe that presenting a brief summary of VaR computation formalisms is 
of advantage, particularly for newcomers to the area. Invested fractions will be 
calculated using a traditional minimum risk approach, with implied correlation 
from VaR then used to influence the invested fractions and thus highlight any 
shifts in risk expectations.

 ■ Computing VaR

As we have mentioned before, given how ubiquitous VaR has become in the 
financial industry, we would like to provide a succinct account of some meth-
ods to calculate this measure. We are convinced that this will be of benefit to 
students in Economics, Finance and Business Administration as well as prac-
titioners outside these areas but who are interested in the topic. In general, 
there are different approaches to the calculation of VaR and here we outline 
some of them.
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Delta-Normal
The Delta-Normal method is underpinned by the key assumption that the returns 
of the assets being analysed have a normal distribution. This implies that the return 
of any portfolio made up of these assets can also be described normally (Linsmeier 
and Pearson, 2000). Using this assumption, the Delta-Normal method is widely 
regarded as the most simplistic way of computing VaR, especially in cases where 
historical asset data is readily available. The approach is particularly appropriate for 
computing the VaR of portfolios made up solely of assets known to have normally 
distributed returns. The Delta-Normal VaR can then be stated as:

(7) 

where is the confidence level associated with the VaR,  is the critical value 
of the specified confidence level according to the standard normal distribution,  
is the standard deviation of portfolio returns expressed as a percentage and  is 
the expected portfolio return (change in value) over the VaR time horizon. This is 
frequently assumed to be zero in cases where the time horizon is small, e.g. daily.

The critical value  of the confidence level is used to scale the standard devia-
tion of returns, hence finding the point at which a given percentage of the returns 
should lie after. It must also be highlighted that Equation (7) gives a percentage value 
of VaR, and can therefore be multiplied by the latest portfolio value,  S , in order to 
obtain a monetary value of VaR:

(8) 

Historical Simulation
The Historical Simulation method relies solely on the past as an indicator of what 
may occur in the future. It uses the idea that stock returns are random in nature and 
therefore past returns are a fair representation of the future. The key in the Historical 
Simulation approach is that each value in the past is given equal weight (Beder, 1995). 
No other assumptions or inputs are required to compute VaR; the method does not 
rely on valuation models and is not subjected to the risk of the models being wrong 
(Jorion, 2001). This ensures the Historical Simulation approach to be relatively 
simple to implement and understand. The procedure can be described as follows:
 1. Calculate periodic returns (as percentages) for all of the assets held in the port-

folio. The return period should be the same as the time horizon for which VaR 
is being calculated. 

 2. Calculate periodic portfolio returns by summing the multiplication of each 
asset and its associated invested fraction. 

 3. Order the set of portfolio returns from most negative to most positive. 
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 4. Calculate how far into the set of ordered returns the VaR will occur (as a per-
centage of the total data points) by subtracting the decided confidence level 
percentage from one. Call this x%.

 5. Apply x% to the total amount of data points, calculating data point d. 
 6. Observe the value occurring at d (in the ordered data set). This is the Historical 

Simulation VaR with a confidence level of (1-x%).

Effectively the value reached should be a portfolio loss which, over the historical 
period being analysed, will have only been exceeded (negatively) x% of the time.

Monte Carlo Simulation
Monte Carlo Simulation is a commonly used technique that can be applied in many 
different ways to help model a system, whether physical or mathematical (Binder, 
2006). In short, it can be defined as a stochastic problem-solving tool that uses 
random variables to approximate the probability of certain outcomes by running 
multiple trial runs.

Monte Carlo procedures are often carried out in cases where data relating to a 
problem is not available in its entirety. Monte Carlo simulation will then be used to 
generate random data, representative of the known properties, which imitates the 
system in question (Binder, 2006; Krauth, 2006). This creates a large set of data from 
which results can be obtained. Trends are more likely to be confidently identified 
where ample data is present.

Monte Carlo Simulation VaR uses the known or approximate properties 
of asset return data in order to generate random data sets from which the VaR 
can be observed. In terms of the way the VaR is measured, the Monte Carlo 
Simulation differs very little from the Historical Simulation except the asset 
and portfolio returns used are created by random draws from the pre-specified 
stochastic process as opposed to being calculated from the historical prices 
(Jorion, 2001).

It is usually the case that the Monte Carlo simulation method for calculat-
ing VaR relies on the estimation on correlation between assets captured in the 
correlation between deviates. This in turn means that there is a need to generate 
correlated random variables (Jorion, 2001) obtained with the aid of Cholesky de-
composition (Miranda and Fackler, 2002). This methodology poses a recurrence 
issue, as a correlation is needed to generate the implied correlation. Instead, in this 
work we use Principal Component Analysis (PCA) to calculate VaR (Brummelhuis 
et al., 2002). PCA enables the construction of random variables to be uncorrelated 
with one another, while describing a large proportion of the variability of the asset 
prices in question. The principal components are orthogonal which means that 
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they are uncorrelated and so their covariance matrix is simply the diagonal matrix 
of their variances and thus they can be simulated independently without the need 
for Cholesky decomposition and with the added advantage of cutting down the 
computational time needed. 

 ■ Case Studies

Methodology
In this work, we have carried out three case studies, in which portfolios of in-
creasing asset size are formed. The main aim in each case is to calculate the 
implied correlation using VaR, and then use this to recalculate minimum risk 
portfolios. Having assessed each of the VaR methods mentioned in the previous 
section, we have used the Historical Simulation and Monte Carlo Simulation 
approaches for the analysis carried out in this paper in order to inform the cal-
culation of implied correlations. Delta-Normal, although simple to implement, 
relies too much on the asset return distribution being normal. Therefore in cases 
where this may not be the case, it could lead to inaccuracies in the VaR calculated. 
The case studies are based on stock data over a period of five years from 30th 
October 2006 to 28th October 2011. Price data was collected using DataStream 
(Datastream International, 2012). We calculated returns to form the basis of this 
analysis. In the first instance, we used used five years of returns calculated to 
construct a historical variance-covariance matrix that allows us to come up with 
an initial minimum variance portfolio based solely on return information. The 
main aim of the work is to calculate, using VaR, implied correlation and then 
use this to recalculate the minimum risk portfolios obtained as described above. 
The recalculated weights are used to assess the risk and return characteristics 
of the new portfolios taking into account the VaR information via the implied 
correlation given by Equation (6). 

More specifically, for each case study, we construct the appropriate minimum 
risk portfolio, comprised of the company stocks considered. We then calculate the 
daily VaR (with data over 5 years), with a 95% confidence level, of each stock in the 
portfolio individually and the portfolio itself, using first the Historical Simulation 
method and then the Monte Carlo Simulation method. Using these VaR values 
and the minimum risk portfolio invested fractions the mean implied correlation, 

, is computed. Using the relationship between covariance, standard deviation 
and correlation (Equation (2)), revised covariance values can be calculated using 
the implied correlation. A new variance-covariance matrix is then defined and 
used in recalculating a minimum risk portfolio. As two methods of calculating 
VaR are used, this means two different values of implied correlation are calculated 
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and in turn two revised minimum risk portfolios are produced in each case to 
compare to the original. Conclusions are then drawn on the results found from 
this approach. We consider 3 case studies, calculating 9 portfolios: 3 minimum 
variance portfolios, 3 implied correlation portfolios using Historical Simulation 
VaR and 3 implied correlation portfolios using Monte Carlo VaR. Table 1 shows 
a summary of the assets included in each case study. Each of the case studies is 
discussed in Sections 4.2, 4.3 and 4.4 respectively. It should be noted that all as-
sets being used for the investigations are the stock of companies competing in a 
variety of market sectors.

Finally, we are also interested in assessing the effect that the use of implied 
correlation from VaR will have in the rebalancing of the portfolio over time. In 
order to do that, we start with the portfolios calculated using the five-year data 
described above and carry on a proforma track record of each of the portfolios, 
with a rebalancing period of 10 days (comulatively) over a period of four months, 
using therefore data from 31st October 2011 to 13th January 2012. This analysis is 
presented in Section 4.5.

Case Study 1
This case study is a two-asset portfolio based on Rolls-Royce and General Electric. 
The minimum risk portfolio weightings for the starting portfolio are: Rolls-Royce 
58.10%, General Electric 41.90%. These invested fractions, over the five-year period 
from 2006 to 2011 as stated above, correspond to a portfolio risk of 1.8794% and a 
return of 0.0355%. With this information we obtain the VaR for the assets and the 
portfolio. The VaR value for Rolls-Royce stock over the five-year period turned out 
to be -3.40% using the Historical Simulation approach as can be seen from Figure 
1.A. In turn, the VaR using the Monte Carlo Simulation was approximately -3.5696% 
as shown in Figure 1.C. Using similar calculations for General Electric stock, we are 
able to calculate its VaR: -3.8069% for the Historical Simulation and -4.0973% for 
the Monte Carlo Simulation.

Table 1 
Number of assets and companies used in the case studies carried out for this work

Case Study Number of Assets Assets

1 2 Rolls-Royce, General Electric
2 3 As in case study 1 + Barclays
3 10 As in case study 2 + BP,

British American Tobacco
BSKYB, Centrica,
GlaxoSmithKline, Tesco, Vodafone

The assets used in each case study are cumulative from one case study to the next.
Source: Own elaboration.
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Figure 1 
Case Study 1: Two-asset portfolio based on Rolls-Royce and General Electric 

Panels A and C show the VaR obtained from the Historical Simulation approach over a five year period for Rolls-
Royce and General Electric, respectively. Panels B and D show the VaR calculated from Monte Carlo Simulations 
over a five-year period for Rolls-Royce and General Electric, respectively.
Source: Own elaboration.

With the values mentioned above we can now find values for the implied cor-
relation that will allow us to calculate new variance-covariance matrices to produce 
revised minimum variance portfolios. The rebalanced portfolios had very similar 
compositions:

 ■ For the Historical Simulation: Rolls-Royce 58.85% and General Electric 41.15%
 ■ For the Monte Carlo Simulation: Roll-Royce 58.06% and General Electric 41.94%

These weights and the implied VaR calculation give us the following results: 
for the Historical Simulation we obtain a portfolio VaR of -2.8771%, whereas the 
Monte Carlo Simulation turns out to be -3.0649%. These results can be seen in 
Figures 1.B and 1.D, for the Historical Simulation and Monte Carlo Simulation, 
respectively. The new portfolio generated based on implied correlation from Monte 
Carlo Simulation VaR perceives the risk to be lowest, at 1.8771%, against comparable 
portfolios considered here, i.e. Minimum Risk and implied correlation based on 
Historical Simulation VaR. This alone shows that by considering implied correla-
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tion, an alternative portfolio can be generated which may offer advantages in terms 
of risk perception. The invested fractions of the portfolio formulated using implied 
correlation from Historical Simulation VaR correspond to the highest risk level out 
of the portfolios calculated. As expected though, this higher risk level does offer the 
greatest return of 0.0361%. The returns offered by the implied correlation Monte 
Carlo Simulation VaR portfolio and the minimum risk portfolio are very similar 
(at around 0.035%). This shows that in comparison (of just risk/return values) the 
Monte Carlo portfolio offers better value to the investor (in terms of risk percep-
tion), offering a slight reduction in risk for the same level of return. In reality, the 
three methods used to generate portfolios are alternative ways of getting an answer 
to the optimisation problem. An investor will never have to choose between such 
portfolios, although the variation in risk and return values may play a key part in 
choice between alternative investments (a portfolio may be recalculated, using im-
plied correlation, with the aim of showing a lower risk than a different portfolio).

Case Study 2
Case Study 2 is a three-asset portfolio comprised by Rolls-Royce and General Electric 
(as in case study 1) together with Barclays. The minimum risk portfolio weightings 
for the starting portfolio are as follows: Rolls-Royce 59.21%, General Electric 42.35% 
and Barclays −1.56%. The small, short sold invested fraction attributed to Barclays 
demonstrates the volatility of the stock over the period of returns used (the standard 
deviation is significantly higher than that of Rolls-Royce and General Electric) - it 
appears to be a risky asset, and the weighting reflects this. The risk associated with 
these initial portfolio weightings, measured over the five-year historical return period 
is 1.8782%. The portfolio return for the same period was calculated to be 0.0362%. 

Figure 2 
Case Study 2: Three-asset portfolio comprised by Rolls-

Royce, General Electric and Barclays

Panel A shows the VaR of the portfolio obtained from Historical Simulations whereas Panel B shows the VaR 
obtained from the Monte Carlo approach.
Source: Own elaboration.
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The revised portfolio invested fractions calculated from the Historical Simu-
lation VaR implied correlation were as follows: Rolls-Royce 61.09%, General 
Electric 41.92% and Barclays with a further short-selling at -3.01%. As found 
with Case Study 1 the historical simulation revised portfolio is perceived riskier, 
at 1.9487%, than the minimum risk portfolio, and it offers a greater return of 
0.0375%. The same revised portfolio, but this time using Monte Carlo Simulation 
VaR implied correlation had weights of: Rolls-Royce 56.92%, General Electric 
40.95% and Barclays 2.13% - Notice that in this case the short-selling for Bar-
clays has gone away. This portfolio had associated five-year risk of 1.8751% and 
a return of 0.0348%.

The results of the Historical Simulation and Monte Carlo Simulation approaches 
for the VaR of this portfolio can be seen in Figures 2.A and 2.B, respectively. The 
Monte Carlo Simulation VaR implied correlation portfolio, as in Case Study 1, per-
ceives the lowest risk compared with the other two portfolios. This time though the 
lower risk achieved is at the cost of the associated return, which is also lowest in 
comparison to the other two portfolios. Further highlighting the natural relation-
ship between risk and return, the Historical Simulation VaR implied correlation 
portfolio carried the highest risk as well as return. 

Case Study 3
Case Study 3 corresponds to a 10-asset portfolio comprised by Rolls-Royce, General 
Electric, Barclays, BP, British American Tobacco, BSkyB, Centrica, GlaxoSmithKline, 
Tesco and Vodafone. We have calculated the VaR for the stocks mentioned above 
and which are summarised in Table 2.

Table 2 
Daily VaR (95% confidence level) from five years of data from 

October 2006 for the companies included in Case Study 3
Stock Historical Simulation VaR Monte Carlo Simulation VaR

Rolls-Royce -3.4000% -3.5696%
General Electric -3.8069% -4.0973%
Barclays -5.9957% -7.4426%
BP -2.9540% -3.2804%
British American Tobacco -2.3084% -2.5714%
BSKYB -2.8388% -3.0213
Centrica -2.5767% -2.8530%
GlaxoSmithKline -2.2286% -2.4066%
Tesco -2.5309% -2.7237%
Vodafone -2.8727% -3.0603%

Source: Own elaboration.
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Table 3 
Weights of the three different portfolios considered in Case Study 3

Stock Minimum Risk Implied Correlation 
Historical Simulation VaR

Implied Correlation Monte 
Carlo Simulation VaR

Rolls-Royce -3.04% 1.31% 1.90%
General Electric 11.50% -2.61% -1.78%
Barclays -5.61% -9.23% -8.14%
BP 9.01% 5.95% 6.25%
British American Tobacco 15.33% 21.55% 20.81%
BSKYB 13.54% 9.92% 9.96%
Centrica 13.61% 14.50% 14.23%
GlaxoSmithKline 26.81% 31.03% 29.63%
Tesco 15.01% 18.40% 17.87%
Vodafone 3.84% 9.18% 9.27%
Source: Own elaboration.

Figure 3 
Case Study 3- Ten-asset portfolio VaR

Panel A shows the VaR of the portfolio obtained from Historical Simulations. Panel B shows the VaR obtained 
from the Monte Carlo Simulations.
Source: Own elaboration.

The weights of the different portfolios considered in this case study are shown 
in Table 3. From the composition of the portfolios it is easy to see how some of the 
stocks change their weights in the portfolio once the VaR information is incorporated 
in the calculation. A case in point is that of General Electric: in the minimum variance 
portfolio this stock has a weight of 11.50%, whereas once the VaR is included in the 
optimisation of the portfolio, this stock is short sold in both portfolios that consider 
the implied correlation measure. The opposite behaviour is seen for Rolls-Royce. 

The Monte Carlo Simulation VaR implied correlation portfolio once again per-
ceived the lowest level of risk at 1.0777% compared to 1.0963% for the Historical Simu-
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lation one. The return associated very close in both cases at 0.031%. The Monte Carlo 
approach, giving the lowest risk, has provided a consistent result throughout all three 
case studies. Nonetheless, this can indeed be influenced by the periods analysed, and 
as we know in the area, future performance must not be inferred from past results.

This case study behaved largely as expected, showing a significant reduction 
in both risk and return. The reduction in risk was also reflected in the values of 
VaR - the worst-case portfolio loss was shown to be a lot lower than both the two 
and three asset cases. Figures 3.A and 3.B show the portfolio VaR  for case study 3 
using the Historical Simulation (-1.7459%) and Monte Carlo Simulation (-1.8346%) 
respectively. With these results in mind, considering implied correlation seems to 
be an adequate alternative way of calculating and even checking a portfolio. The two 
methods of calculating the measure are showing different extremes of results when 
applied to a portfolio and compared back to the minimum risk case (Monte Carlo 
Simulation tends to give lower risk compared to Historical Simulation).

Further Analysis – Rebalancing of the Portfolios
Having distinguished that the use of implied correlation offers an alternative way of 
calculating a minimum risk portfolio, which may or may not have a lower perceived 
level or risk, further analysis can be carried out to see which set of portfolio weights 
actually gives the lowest risk looking back over a time period. This will be tested 
using the 9 sets of portfolio weightings already calculated over Case Studies 1 to 3 
mentioned above plus an additional 36 portfolios based on an expanding time series.

In order to do this, we will take the view that after the initial portfolio weight-
ings are calculated (based on the 5 year return data), they are all then invested 
in immediately for a ten-day period. After 10 days the risk and return of each 
portfolio is then calculated. This will give us 9 risk/return values, one each for 
the minimum risk portfolio, the revised portfolio based on Historical Simulation 
VaR and the revised portfolio based on Monte Carlo Simulation VaR per case 
study. A further total of 9 portfolios will then be generated, based on the 5-year 
plus 10-day data. This time the 20-day risk/return values are calculated for each. 
We would like to note that this 20-day period of data is inclusive of the 10-day 
period used earlier with the additional 10 subsequent trading days. We then go 
on to calculate another set of 9 portfolios, using 5 year plus 20-day data and then 
calculate the 30-day risk/return points for each of these. This pattern will continue 
until 5 year plus 40-day portfolios are computed and then applied over a 50-day 
period, generating risk/return values.

At the end of these calculations there are 45 risk/return values which effectively 
track the three types of portfolio over a 50-day period (from October 31st 2011 to 
January 13th 2012). The following figures show the resulting risk/return values plotted 
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per case study: Figure 4 shows all  two-asset portfolio points plotted on the same 
risk-return graph, likewise the 3 and 10 asset portfolio points are shown in Figures 
5 and 6, respectively. Each cluster of points plotted is comparative and the further 
left a point lies, the lower that portfolio’s risk is. It should be noted that one cluster 
of points (containing the minimum risk point, the Historical Simulation VaR point 
and the Monte Carlo Simulation VaR point) should not be compared to one another 
with the view of making an investment choice, as each cluster has been measured 
over a different return period.

The plot in Figure 4, contains the 15 (5 per method) risk/return values calcu-
lated for the two-asset portfolio of Case Study 1. As can be seen from each cluster of 
points, all 3 methods give extremely close values for risk and return, with the points 
almost indistinguishable from each other. In other words, an investor, with a risk-
averse attitude, should be fairly indifferent (in a two-asset case) if given a choice as 
to how they construct their portfolio, as it is not obvious that either method achieves 
a lower risk. The cluster of points that lie below the x -axis show a negative return 
- this is due to the 20-day period over which these were measured. This period was 
a particularly poor one in terms of the individual asset returns (contributing to 
the portfolio) with a Rolls-Royce expected (average) return of -0.01% and General 
Electric expected return of -0.40%.

Figure 4 
Risk-return values for a 50 day tracking of the two-asset portfolio in Case Study 1

 

                   Source: Own elaboration.
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Figure 5 is the plot of the risk/return values for Case Study 2, in which the three-
asset portfolio was analysed. The first thing to notice is that, despite a similar plotting 
scale being used, the points are now a lot more dispersed than in the previous case 
study. The addition of a further asset to the portfolio has had the affect of achieving a 
much more diverse set of comparative points. These clusters (containing the minimum 
risk point, the Historical Simulation VaR point and the Monte Carlo Simulation VaR 
point) are now less obvious to identify compared with the two-asset case (Figure 4). 
It has therefore been easier to recognise a pattern within the data, in that the portfo-
lios generated using implied correlation from Historical Simulation VaR appear to be 
consistently achieving the lowest risk for a given level of return over each different 
measuring period (and often the highest return also). We would like to note that the 
lines shown in Figure 5 are used merely to guide the eye and should not be though of 
as best fit or trend lines necessarily. The Historical Simulation line lies furthest to the 
left and it is therefore understood that this method reduces risk in this three-asset case. 
The guiding line for the minimum risk portfolio is not shown on this graph as it is not 
clearly distinguishable from the Historical Simulation line. Although this shows that 
the points consistently lie extremely close together, it is clear by inspection that the 
Historical Simulation points do lie further left in each cluster. The Monte Carlo Simula-
tion guiding line demonstrates not only that this method always gave the highest risk 
level; in each case it also achieved the worst level of return. This method of generating 
portfolios will have therefore given an investor poor value in comparison to the other 
two methods, in this particular case. Nonetheless, it can certainly be argued that the 
results may be of interest for very conservative investors.

The plot corresponding to the portfolios of Case Study 3 is shown in Figure 6. It 
shows an even greater dispersion of cluster points. It appears that the more assets held 
in the portfolio, the greater the difference in the risk/return points achieved by the three 
different methods. Comparing the two-asset to the ten-asset case confirms this. A pos-
sible reason for this increasing dispersion is the uncertainty introduced into the model 
by the increasing number of assets. In terms of the method giving the most favourable 
level of risk (from the viewpoint of a risk averse investor) in this case, the results are a lot 
more mixed compared with Case Study 2. In 3 of the 5 cases, the Historical Simulation 
VaR implied correlation portfolios have achieved the lowest risk level while in 2 of the 
5 cases the minimum risk portfolio has given the lowest risk. Interestingly, in the 40-
day measured period the Historical Simulation portfolio actually gave the highest risk. 
These results are highlighted by the guiding lines plotted (the Monte Carlo Simulation 
line has not been plotted as it cannot be distinguished from the Historical Simulation 
line on the scale used). The crossover that occurs around  0.85% risk has been caused by 
the pair of minimum risk portfolio points that have a superior risk level in comparison 
to the relevant Historical Simulation points. Similarly to Case Study 2 (the three-asset 
case) the Monte Carlo Simulation points have tracked the Historical Simulation points 
very closely, much like the minimum risk portfolio points in that case (see Figure 5).
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Figure 5 
Risk-return values for a 50-day tracking of the three-asset portfolio in Case Study 2

         Source: Own elaboration.

Figure 6 
Risk-return for a 50 day tracking of the ten-asset portfolio in Case Study 3

                      Source: Own elaboration. 
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Having completed this analysis, comparing the actual risk/return performance 
over increasing time periods of the minimum risk portfolio to portfolios generated 
using implied correlation from VaR, we can make the following observations: Al-
though the graph of Case Study 2 (Figure 5) points towards the portfolios generated 
using implied correlation from Historical Simulation VaR performing the best based 
on a remit of reducing risk, the two- and ten-asset studies have produced somewhat 
inconclusive results. This is to be expected given the constraints used to generate 
these portfolios while keeping the present work within the remit of a publication. It 
seems a greater amount of data and analysis is needed to study whether or not there 
are certain conditions that will see one method generating consistently superior 
portfolio results in terms of the risk level achieved. In this particular case, our aim 
is to highlight this methodology to the community in the area and expect that these 
results encourage others to tackle the issues raised here. It should be noted that the 
way in which the results of each of the methods are viewed will be largely dependent 
on a particular investor’s attitude to risk, and that must be something to always bear 
in mind. In this work, we have taken the view that minimum risk is favourable, 
however this is not always the assumption made (Fabozzi et al., 2002).

 ■ Conclusions

In this work we have used an alternative measure for the correlation among assets in 
a portfolio, namely the implied correlation calculated from Value at Risk informa-
tion (VaR). Various methods to calculate VaR have been assessed: the Delta-Normal 
method, the Historical Simulation method or the Monte Carlo Simulation method. 
We have presented a brief account of the calculation of VaR with these three ap-
proaches in the expectation that students in the area get a better picture of the 
methodologies used. Out of these three methods, the Delta-Normal approach was 
deemed to have the greatest disadvantage due to an over reliance on the assumption 
of a normal distribution. The Historical Simulation, which aims to use the past as 
a representation as what may occur in the future, seems to be an appropriate way 
of calculating VaR. However, in an evolving world where markets are becoming 
increasingly volatile this notion may lead to underestimations of risk. This is where 
the Monte Carlo Simulation can be very powerful in modelling different scenarios, 
although this does come at a significant computational expense.

The application of implied correlation has been shown as an alternative way of 
generating a portfolio, expanding on the traditional minimum risk approach. Com-
paring a standard minimum risk portfolio against the same portfolio influenced by 
implied correlation, it can be seen that the risk perception is altered based on the 
consideration of future risk. However, in the portfolios analysed here there is no 
conclusive evidence that suggests implied correlation portfolios offer a consistently 
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higher/lower risk. This by no means undermines the usefulness of the approach as 
further analysis should be carried out and we expect that a refinement of the method 
sheds more light into the issues raised in this work. 

A further analysis was carried out in order to see if any of the methods performed 
consistently in terms of actual achieved risk and return over increasing time periods. 
In particular, the method whose invested fractions frequently gave the lowest risk 
was sought. Case Study 2 demonstrated that the implied correlation from Historical 
Simulation VaR portfolios consistently achieved the lowest risk. The three methods 
for constructing a portfolio presented in this work, namely the minimum risk ap-
proach, implied correlation based on Historical Simulation VaR and implied cor-
relation based on Monte Carlo Simulation VaR implied correlation, should all be 
considered viable techniques. A key factor in determining which is the so-called best 
approach is the particular investor’s attitude to risk. In this work, we have taken the 
view that that minimum risk is desired and therefore the main priority. However, this 
view is not always shared across global trading markets, and a different perspective 
on risk could lead to different conclusions regarding the methods.

The main aim of this paper has been to provide a straightforward implemen-
tation of the calculation of VaR based on implied correlation as an alternative 
estimator for downside-risk in order to familiarise the reader with this risk mea-
sure. The results of the case studies presented are very particular to the portfolios 
described and should not be taken as generalisations. We expect that the discus-
sions here enable interested practitioners to make further considerations, studies 
and implementations that provide a more general framework to the VaR based on 
implied correlation.
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