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n Abstract: While many different theories have been put forward to 
explain investment behaviour, they are all generally based on dynamic 
optimization, and there are a number of different methods available 
to solve such problems. In such models, the optimal values of the 
control and state variables, namely investment and the capital stock 
respectively, become forward-looking, dependent on the future values 
of prices of both output and the factors of production, and on the (un-
known) end period value of the capital stock. In this paper we suggest 
a new method to obtain optimal investment levels without requiring 
information on the future, or end period conditions. Thus the optimal 
paths of control and state variables are obtained without needing to 
know future values of variables. Instead of maximizing the discounted 
value of the cash flows from unit capital accumulation over an unob-
servable future time interval as a performance index, the firm is assu-
med to maximize the current value of the cash flow of a unit capital 
accumulation at each time t.

n  Resumen: En general, las diferentes teorías que se han planteado para 
explicar la inversión se basan en problemas de optimización dinámica 
cuyas soluciones cuentan con diferentes métodos. En dichos modelos, 
los valores óptimos de las variables de control y de estado, etiquetadas 
como inversión y capital respectivamente, dependen de los precios 
futuros del producto y de los factores de la producción y del nivel de 
capital al final del periodo. En este artículo sugerimos un nuevo método 
para obtener los niveles óptimos de inversión sin requerir información 
sobre los precios futuros o las condiciones de transversalidad. Así, en 
lugar de maximizar el valor presente de los flujos de caja por unidad de 
capital, como un índice de desempeño, la empresa maximiza el valor 
actual del flujo de caja por unidad de capital.
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n  Introduction

While many different theories have been put forward to explain invest-
ment behaviour, they are all generally based on dynamic optimization, 
and a number of different methods are available to solve such problems. 
In such models, the optimal values of the control and state variables, 
namely investment and the capital stock respectively, become forward-
looking, dependent on the future values of prices of both output and the 
factors of production (e. g. see Abel, 1980; Kort, 1989 and 1990). This 
is mainly because firms are represented as maximizing the discounted 
value of the expected cash flows from an incremental addition to the 
capital stock over a time interval in which the future state of economy is 
not observable, and subject to an end-period terminal condition for the 
capital stock. Difficulties arise both in specifying the terminal condition, 
and in representing expectations of future values.

Concerning the terminal condition, investment decisions are typi-
cally taken over a finite horizon, so that in dynamic optimization a ter-
minal condition is needed giving the value of the capital stock at the end 
of the horizon. In practice, though, this value is unknown in advance, 
and indeed the length of the horizon need not be known with certainty. 
This issue is often avoided by representing the investment decision as 
an infinite horizon problem, but this is not very realistic. Firms are often 
concerned about the returns they are able to make on their investments 
over a relatively short time horizon (perhaps due to costs of financing or 
even uncertainty about their continued survival). This is especially likely 
to be the case in a high technology industry where technologies change 
rapidly; firms then may have very short time horizons over which they 
must earn returns to their investments.

The second major issue concerns the representation of unknown fu-
ture values. The evolution of market conditions in future will matter to 
the firm, which therefore must form expectations of these; of course 
these expectations are unobserved. For modelling purposes then, it is 
necessary to make assumptions regarding the future paths of the vari-
ables, such as rational expectations (or simply assuming that the vari-
ables concerned remain unchanged). However, in either case, we are 
unable to determine the correct paths of the optimal controls, but only 
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able to find their approximate values because of the inevitable errors in 
predicting the future paths of the relevant variables.

Given these two issues, our aim in this paper is to suggest a new 
method to obtain optimal investment levels which avoids both of these 
problems. The novelty in this paper is twofold. First, the optimal paths 
of control and state variables are obtained without needing to know fu-
ture values of variables. Second, instead of maximizing the discounted 
value of the cash flows from unit capital accumulation over an unob-
servable future time interval [0,T] as a performance index, the firm is 
assumed to maximize the current value of the cash flow of a unit capital 
accumulation at every time t for all  0 ≤ t ≤ T		recursively. In this optimi-
zation method at time t the firm considers only the market conditions for 
time t, thus avoiding the need for a terminal condition. At the end of time 
t, firms maximize the objective function for time t+1, and so on. This 
representation may be particularly plausible in an economy where the 
economic conditions that influence investment decisions change very 
rapidly. In such circumstances, firms will mostly be concerned with the 
current returns of unit investment. The optimal levels of control and state 
variables with this method are therefore derived as being dependent only 
on the current and past levels of prices of output and the factors of pro-
duction, but not on their future values, on which information is then not 
required.

This paper is structured as follows. The next section summarizes the 
conventional neoclassical investment model and its well-known results. 
In section 3, we introduce our proposed method of optimization by using 
an instantaneous performance index, this being considered both for the 
cases where investment is reversible and where it is irreversible. Section 
4 summarizes main conclusions of the paper.

n  The	model

In the standard neoclassical investment theory, the problem that the firm 
encounters is to find piecewise continuous control variables, I(t), and 
L(t), and an associated continuous and piecewise differentiable state 
variable, K(t), defined on the fixed time interval [0, T] to maximize the 
value of the following performance index (e.g. see Jorgenson, 1963, and 
Takayama, 1996):

(1)     Max
I ( t ), L( t ) J = e− rt p t( ) f K t( ), L t( )( ) − w t( )L t( ) − v t( ) I t( ) − c I t( )( )[ ]

0

T

∫ dt

subject to:
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(2)      
     
(3)       
    
(4) and an end period condition for K(T);  

where p(t) is the price of output, w(t) the  wage of unit labour, L(t): labour 
used in production, K(t): the capital stock the firm owns, v(t): the price 
of capital goods, I(t): investment, all at time t, r : the discount factor 
(assumed to be fixed for simplicity), a: constant depreciation rate of ca-
pital, the function f		(K,	L) is the production function, assumed to exhibit 
decreasing returns to scale2 with  fK>0,	fL>0,	fKL>0, and	fKK<0,	fLL<0,	for 
K,	L ∈ (0, + ∞); and c(I) is the non-negative convex cost of adjustment 
function associated with changing the rate of investment, with c′(I) > 0 
(I > 0), c′(I) ≤ 0 (I ≤ 0) and c" (I) > 0 on I ∈R = (– ∞, + ∞) (Lucas, 1967; 
Mussa, 1977; Abel, 1979; Kort and Jørgensen, 1993).  Constraint (2) 
represents the capital accumulation rule implying that net changes in the 
capital stock equal gross investment minus replacement investment. The 
functions of p(t), v(t) and w(t) are assumed to be continuous and positive 
over the interval [0, T].

The following necessary conditions for optimality can be derived by 
applying Pontryagin’s Maximum Principle: 

(5)      
       

(6)      
    
(7)     
   
(8)       
    

where λ(t) is the Lagrange multiplier associated with constraint (2).  
Condition (5)-(8) together with (3) and (4) are the necessary conditions 
of optimality.  The sufficient condition for a maximum can be derived by 

2 The assumption of decreasing returns to scale is the necessary and sufficient condition for 
profit maximization.  In general, the positivity of the determinant of the Hessian matrix of 
second-order derivatives of the cash flow function (1) with respect to K(t) and L(t) ensu-
res the existence of a unique solution for a profit maximizing firm.  This assumption can 
mathematically be introduced into the model by requiring that  (see Chirinko, 
1993; Brechling, 1975).
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showing that the Hessian matrix of second-order derivatives of Hamilto-
nian function of the problem (1)-(4) is negative definite.  This is so given 
the assumption of decreasing returns to scale (that is ) 
and the convexity of the adjustment cost function (that is c″(I) > 0). 

In the determination of the optimal investment behaviour of the firm, 
λ(t) is a critical variable representing the willingness of the firm to sacri-
fice current revenue for capital accumulation.  Given the transversality 
condition (8), the discounted value of a unit investment can be obtained 
from condition (7) as follows

(9)     
    

The right hand side of (9) represents the expected discounted stream 
of marginal profits that a unit increase in the capital stock generates 
from the present to the end of planning horizon [t,	T] which is currently 
not observable.  As easily seen in (9), the value of λ(s) ∀s ∈ (t,	T) is a 
function of the price of output, p(s), wage w(s) (through condition (5)), 
and the value of K(s) for the time interval [t,	T].

Using (9) and (6) together, the following equality can be written.

(10)   
    

From (10), we can obtain the forward-looking optimal path of in-
vestment.  In the economic literature, it is often convenient to extend the 
planning horizon indefinitely into the future, and change the interval of 
integration in the objective functional from [0,T] to [0,∞] (see Léonard 
and Van Long, 1992).   One of the reasons for doing so is to avoid the 
problem of specifying the end-point-horizon stock value function.  Also 
this representation often leads to simplified formulae. In such cases, the 
forward-looking nature of the dynamic problem (1)-(4) is examined with 
saddle-point behaviour, which is described by a pair of first-order diffe-
rential equations for K(t)	and	I(t).  Commonly this system of first-order 
differential equations yields an equilibrium point (K*, L*) with the saddle-
point property.3 Considering the steady-state values of K(t) and I(t), such 

3 The dynamic behaviour of the optimal solution (K(t),	I(t)) in the KOI  phase space is de-
termined by the eigenvalues (roots) of this dynamic system of differential equations.  Such 
saddle-point dynamics involves both unstable and stable roots.  In problem (2)-(4) with 
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analysis in the infinite horizon yields only qualitative information about 
the direction of the movements in the optimal paths of K(t)	and I(t).  

Although this type of analysis in an infinite horizon provides a ge-
neral insight into the dynamic behaviour of investment, it cannot allow 
us to determine the optimal values of (K(t),	I(t)) numerically in a finite 
horizon.  In particular, the transversality condition does not disappear in 
a finite horizon problem and the value of KT is unknown (so that λ (t) is 
unknown) in practice.

n  Instantaneous	performance	indices	
	 and	optimal	investment	decisions

 
In this section we introduce a new solution algorithm to find the optimal 
trajectories of the control and state variables.  The method employed 
here is recursive in nature, and the optimal solution defined for each time 
t is obtained so as to maximize a particular objective function.  Instead 
of describing the performance index (objective function) in the form of 
an integral (such as (1)) over a time interval [0,T], the following time-
dependent function is chosen.

(11) 
   
where h>0	 is a given number.  The optimal control conditions are 

derived by maximizing J(t) at every time t for all .  Hence, the 
control conditions are referred to as instantaneous control algorithms, 
and function (11) can be regarded as an instantaneous performance 
index. We find the optimal values of (K(t),I(t),L(t)) at time t so as to 
maximize J(t)	in (11), assuming that the values of (K(t-h),I(t-h),L(t-h)) 
at time (t-h) are known.  Also in the case where h is sufficiently small, 
function (11) can be considered as the total cash flows of the firm over 
the interval [t,t+h].  Since h and  are constant for a given time t, their 
values have no effect on the optimization of (11).

The capital accumulation rule (equation 2 above) continues to apply.  
In general this is a first order differential equation, which for a given 
initial value K(t0) can be written as follows:  

(12)     
         

a positive discount rate, if a steady-state (K*,L*) exists, then it cannot be locally stable in 
the KOI space due to the positive roots of the system, so that we have only conditional 
stability.
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In this specific case where t0=t-h, equation (12) reduces to

(13)    
   

The integral on the right-hand side of (13) can be calculated by the 
Trapezium rule (Ketter and Prawel, 1969, Collatz, 1966) to give:

(14)   

where O(h3) is the	remainder. Ignoring the term O(h3),equation (14) can 
be written as 

(15)     
            
where 

(16)    
        

Equation (15) is a discrete approximation of equation (2) yielding 
the value of the capital stock K(t) at time t depending on both the value 
of investment I(t) and the value of F(t-h).  Now, the problem becomes 
one of maximizing (11) subject to discrete equation (15) as follows.

(17)     
 

where  is given.  We must note that problem (17i) can be 
referred to as an independent maximization problem of (2)-(4) for the 
discrete system subject to (17ii). Problem (17) is a convex programming 
problem, and the conditions for optimality can be obtained by applying 
the Kuhn-Tucker theorem (Takayama, 1985).  However, these optima-
lity conditions can also be derived as follows.   Upon substituting (17ii) 
into (17i), we are able to transform problem (17) into one of maximi-
zing the following equation in the open region    with respect to 

:
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(17’)  
  

The optimality conditions for (K(t),	 I(t),	 L(t)) from (17’) are then 
given by the following system of equations

(18) h

2
p t( ) fK K t( ), L t( )( ) = v t( ) + ′ c I t( )( )   

    

(19)     
     

(20)     
     

Due to the convexity of functional J(t) with respect to its arguments 
(K(t),	 I(t),	 L(t)), conditions (18)-(20) are also the sufficient conditio-
ns for optimality. Consequently, the optimal solution (K(t),	I(t),	L(t)) at 
time t can be obtained from (18)-(20), if the value F(t-h) is known.  The 
next task is to prove the existence and uniqueness of the optimal solution 
(18)-(20).

n  The	existence	and	the	uniqueness	of	the	solution

In this respect, we analyze two different cases under different assump-
tions regarding the cost of adjustment function.  First, we examine the 
optimal investment decision in the case where the adjustment of capital 
stock involves adjustment costs for both purchasing and re-selling unit 
capital; in other words, capital is assumed to be subject to costly revers-
ibility.  In the second case, the investment expenditure is assumed to 
be perfectly reversible without any adjustment cost when used capital 
goods are sold in the secondary capital goods market.

Case	I:	Optimal	Investment	Decisions	with	Costly	Reversibility

This is specified by introducing a convex cost of adjustment func-
tion, which postulates that revenue from selling a unit used capital good 
in the secondary capital goods market is lower than its purchasing price 
due to sunk costs.  Now, let the following assumptions hold. 
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Assumption 1.		As	before,	the	production	technology	is	assumed	to	
possess	decreasing	returns	to	scale.		The	production	function	f(K,L)	and	
its	first-	and	second-order	partial	derivatives	are	assumed	to	be	conti-
nuous	in	the	region	 ,	where	the	partial	deri-
vatives	satisfy	the	same	properties	as	in	section	2	above.

Assumption 2.	 	 	Suppose	that	 	and	 	satisfy	
the	conditions	

(21) 	 					and					 	,	

	 	 for	given	 	 	

and

(22)				 				and					 		

	 	 for	given	 	 			

where	L	=	φ (K,	Z) is	the	inverse	function	of		Z	=	fL	(K,	L)	with	respect	
to	L	∈	(0,	+	∞)	.4	

Assumption 3.	 c	 (I)	 is	 a	 convex	 continuous	 non-negative	 function	
with	continuous	first	and	second	order	derivatives	c′	 (I)	and	c′	 (I)	 for		
I	∈	R,	and	satisfying	the	following	conditions:	

Proposition 1: Given assumptions 1 – 3 above, the system of equa-
tions (18)-(20) have a unique solution (K(t),	I(t),	L(t))	for a given F(t-h) 
and arbitrary t, where .

Proof:  Since , the function  possesses the inver-
se function  with respect to , and . 
Condition (21) indicates that the function  is defined for all 

.  Therefore, we obtain L(t)	from (20) as follows

4  The argument Z can be considered to be the real wage from condition (20).
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(23)     
     

Then substituting (23) into (18) yields

(24)    
  

Let  for all  and . 
Also it can easily be shown that . Hence, the function 

 has the inverse function  with respect to 
, and . Additionally, condition (22) postulates 

that the function  is defined for all .
We are now able to write (24) as follows

(25)    
    

In order to obtain the optimal I(t), we can derive the following using 
(19) and (25).

(26)   
    

The right-hand side of (26) is defined for all , 
where  is the unique solution of equation  and 

, and satisfies the following conditions

(27)   
    

and

(28)    
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The left-hand-side of (26), , is a li-
near function of I(t) with a positive slope (h/2), and  
and .  As a result, equation (26) yields a unique solution 

 by using (27) and (28).  The optimal values of K(t) 
and L(t), in turn, can be obtained from (25) and (23) respectively (see 
Figure 1).

We must note that the optimal value of investment can also be obtai-
ned from (24) in terms of K(t) as shown below.

(29)    
    

where  is the inverse of the function .  The value of I(t) 
given by (29) can be referred to as an optimal regulator.  Since the right-
hand sides of (23) and (29) are considered as a function defined on the 
state function K(t), these formulas yield a closed-loop solution for the 
optimal control variables I(t) and L(t). Additionally, they can be consi-
dered as an open-loop with respect to exogenous variables p(t), w(t) and 
v(t).  Substituting (29) into (19) renders the following equation for the 
optimal value of the capital stock.

(30)   
   

The existence of the solution  of (30) is equivalent to the 
existence of the solution  of the equation (26).  Hence, 
equation (30) has a unique solution . 

The determination of the optimal and unique value of investment and 
the capital stock are graphically shown in Figure 1.  Both sides of (26) 
are depicted in the figure separately.  In Figure 1, the capital stock and 
investment are plotted on the vertical and horizontal axis respectively.  
It is seen from the left-hand side of (26), the function yielding K(t) for a 
given value of F(t-h) at time t-h is  linear and increasing with respect to 
investment, with slope (h/2).  It is seen from (17’) that F(t-h) is defined 
based on the levels of the capital stock and investment at time (t-h); the 
higher the level of the capital stock is, the higher will be the level of F(t-
h).  In the figure, two linear functions are drawn for two different values 
of F(t-h); the solid line representing its higher value at point D. The case 



�2 n EconoQuantum Vol. 3. Núm. 2

of a lower value of F(t-h) indicates a lower value of K(t) and higher va-
lue of I(t) at time t, and vice	versa. 

In the case where F(t-h) is higher than K0(t)	at point	D,55 it is clearly 
seen from Figure 1 that the firm wishes to disinvest (i.e. I(t)<0), and the 
following condition (from 17’) will hold for time t 

  

Upon substituting K(t) from (19), we then get

  

The firm continues to adjust its capital stock by disinvesting as long 
as K0(t)<	F(t+mh)<F(t-h), where m is the number of steps (the number 
of times the optimization is repeated).  At a particular step, the firm fina-
lly reaches to the point where F(t+(m+1)h)<K0(t).  This then shows that 
if the firm starts adjusting its capital stock by disinvesting, then it must 
definitely wish to invest at some point in the stage of the adjustment.  If 
F(t-h) is low enough, it is seen from Figure 1 that the optimal I(t)	and 
K(t) become significantly high at the next stage.6

Figure 1
Function K = Φ0 (t,	I), I ∈ (I0 (t), + ∞), notes the function given by (25)

5 K0(t)	and	I0(t) respectively indicate the values of the optimal capital stock and investment 
in the beginning of each time period t.  However the initial capital stock and investment at 
t=0 are represented by K(0) and I(0) respectively.

6 Also we must note that since the time interval is considered as a finite horizon, then it 
would be misleading to consider that the optimal values of K(t+nh) and I(t+nh) move 
around a particular steady-state equilibrium values I* and K* as the number of steps, n, 
increases.

I0 (t) IA (t) IC (t)

I (t)

K = Φ0 (I)

K (t)

KA (t)

KC (t)

K0 (t)

F (t-h)

A

D

C

K = –  I + F (t – h)h

2

B
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The right-hand side of (26) in fact represents function (25), and is 
unbounded when   and bounded when , as 
seen in the figure, under condition (27) and (28).  It is easily seen from 
(25) that the different locations of this function are determined by the 
different levels of price variables (namely p(t),	w(t) and v(t)) and the 
marginal costs of capital adjustment.  In Figure 1, the function is depic-
ted for given levels of prices.  The intersection of  (25) with the vertical 
axes OK at point B can be called the zero-investment point for the ini-
tial optimal capital stock K0(t) for time t. At this point, the firm has no 
motivation to invest (or disinvest) unless prices vary. The intersection 
of the lines representing the two sides of (26) yields unique optimal 
values of K(t) and I(t).  This solution together with (23) then shows a 
recursive dependence of the optimal values (K(t),	I(t),	L(t)) upon F(t-h).  
In order to see this recursive relationship clearly, it is sufficient to derive 
I(t) from (26).  Additionally, deriving the optimal solution values (K(t),	
I(t),	L(t))	at time t, the value of F(t) immediately becomes determined, 
and the optimal values of values (K(t+h),	I(t+h),	L(t+h)) at time (t+h) 
can, similarly, be obtained, depending on F(t).  However, the optimal 
behaviour at the initial stage where t=0, must be considered separately 
with particular care.  In this case, equation (19) is regarded as	K(0)=K0.  
From (23), we have

(31)     
    

Using (18), we have

(32)    
   

Then I(0) can be derived from (32) by substituting (31).  Whether 
I(0) is positive or negative is dependent on the sign of the following 
scalar obtained from the left-hand side of (32).

(33)     
    

In the case where the initial capital stock, K0, is small, it is likely that 
α0	will positive. On the other hand, having a small demand for labour 
increases the possibility of negative value of α0.
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Additionally, the right side of equation (26) given by (25) is a 
function of p(t), v(t) and w(t).  It is easily shown that the signs of the 
partial derivatives of (25) with respect to p(t), v(t) and w(t) are as fo-
llows: ,  and . As everything re-
mains constant, it is evident in a particular case where p1(t)<p2(t), then	
K1(t)<K2(t) and I1(t)<I2(t) for the optimal solution (K1(t),	 I1(t),	 L1(t)) 
and (K2(t),	I2(t),	L2(t)) corresponding to p1(t) and p2(t) respectively.  Also 
it can easily be obtained from (23) and (25) that since 
, we get L2(t)>L1(t).  The response of the optimal solution (K(t),	 I(t),	
L(t)) both to v(t) for given (p(t),	w(t)) and to w(t) for given (p(t),	v(t)) can 
similarly be obtained.

Case	II-Optimal	Investment	Decisions	with	Costless	Reversibility

We now assume that investment expenditure is reversible, and re-se-
lling capital already in use requires no costs.

Proposition 2: Let c(I)≡ 0 for I ≤ 0; c′ (I) > 0 and c″ (I) > 0 for  
I > 0; and c′ (+	∞) = + ∞, and let conditions (21) and (22) hold. Then the 
system of equations (18)-(20) has a unique solution (K(t),	I(t),	L(t))	for 
a given F(t-h) and arbitrary t, where h	≤  t	≤  T.

Proof:  Although functions V(t) and H(t) are not concave with respect 
to the triple arguments (K(t),	I(t),	L(t)), it is seen that function (17’) is 
concave in a pair of arguments (I(t),	L(t)).  Hence, the optimality condi-
tions are given by the system of (18)-(20).  In such a case, the optimal 
solution of the system (18)-(20) is reduced to the solution of (26) with 
respect to I(t). The following function must however be considered on 
the right-hand side of (26).

(34)   
          

where K0 (t) > 0 is the unique solution of the following equation

(35)    
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Having substituted (34) into the right-hand side of (26), the resulting 
equation has a unique solution I(t) ∈ R in the case of costless reversibi-
lity (see Figure 2).  It is obvious that the optimal value of L(t) can also 
be obtained from (23).

According to the definition of an optimal solution, the values of 
(K(0), I(0), L(0)) ∈ (0, + ∞) × R × (0, + ∞) for t=0 can be obtained so as 
to maximize the following function

(36)   
   
However, the initial capital stock is given at time t=0; that is K(0)=K0.  

Then the problem must be considered as maximizing the following func-
tion with respect to (I(0),	L(0)).

(37)         
   

It is clear that function J(0) does not have a finite maximum value 
under the constraint imposed on the adjustment cost function c(I).  Ne-
vertheless, the maximum value of the function J(0) with respect to L(0) 
can be obtained from the following condition

(38)     
    

Hence, we may derive the initial value of L(0) as

(39)     
     

However, function J(0) is not bounded above with respect to the ar-
gument I(0) ∈ R.  In order to determine the initial value of I(0), we must 
use economic intuition. For instance, the initial value of I(0) can be de-
rived from the condition that the capital stock at the first stage is equal 
to its initial value; that is K(0)=K(h).  Since the time interval h from the 
initial step to the first one is too small, the firm is to be unable to gene-
rate enough positive revenue to cover all the purchasing cost of a unit of 
capital (see equation (18)).  The only way of producing income for the 
firm over such a small interval appears to sell the capital stock already in 
use.  We, however, assume that at the initial state, the firm sells no capi-
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tal stock to earn positive income, and aims only to maintain the existing 
capital stock by undertaking replacement investment at	t=0.  It is clear 
that using (16), the condition K(0)=K(h) can be written as follows.

(40)     
     

or

(40’)    
    

From (40’) we have

(41)    
    

Considering the coefficients with the h-order term in (41), we obtain 
I(0)=aK0 for the initial value of I(0).  The other features of the optimal 
solution in the case of costless reversible investment, such as the de-
pendence of the optimal solution on function p(t), w(t) and v(t), can be 
examined in a similar way to those in the case of costly reversibility. 

Figure 2
Function K = Φ0 (t,	I), I	∈R, indicates the function given by (34)

The determination of a unique optimal level of investment in the case 
of costless reversibility is graphically shown in Figure 2.  The adjustment 
of the capital stock in this case differs from the previous case only when 
F(t-h) is high, and the firm wishes to sell the excess capital stock at the 
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K = Φ0 (t, I)
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given level of prices.  It is seen from Figure 2 that this adjustment process 
takes place instantaneously (at one step) requiring no adjustment cost.  
However, having disinvested the excess capital stock at the initial stage, 
the firm faces the case where F(t)<K0(t) at the first stage, indicating both a 
shortage of capital stock and a motivation for the firm to invest.

n  Conclusion

The optimal control theory has commonly used in the neoclassical theory 
of investment. While the Calculus of Variation, Dynamic Programming 
and Pontryagin’s Maximum Principle have been the most popular tech-
niques to find the optimal paths of capital accumulation and investment 
of a hypothetical firm, the trajectory of the control variable becomes 
dependent on the future evaluation of other economic variables in the 
model, such as the prices of output and capital goods and wages, and 
on the end period condition in a finite horizon.  Since the future state of 
the economy is unknown at current time for the firm, the optimal path 
of investment can only be derived under a particular case where either 
the future values of relevant variable are predicted and substituted in the 
function of the optimal investment, or they can simply be ignored.  In 
both cases, we can only derive approximated optimal path of investment.  
However, in this paper we introduce a new method, known as Instanta-
neous Performance Index, to find the solution of the optimal investment 
behaviour without requiring any information on the future.  
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